

Narrative2Music: Generating Emotion-Aligned Music for Sentences

Mohammad Shokri¹, Alexandra C. Salem¹, Gabriel Levine¹, Johanna Devaney^{1,2}, Sarah Ita Levitan^{1,3}

¹CUNY Graduate Center, ²Brooklyn College, ³Hunter College

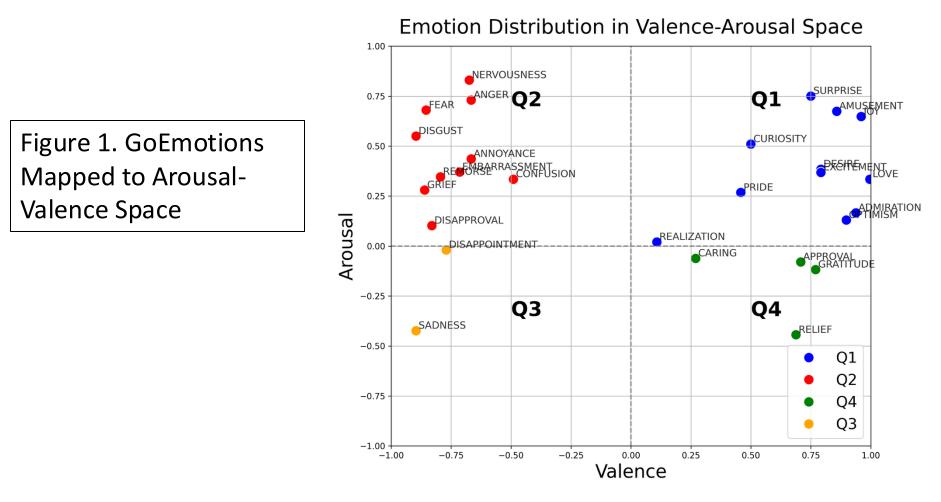
INTRODUCTION

- We introduce Narrative2MIDI, a sequence-to-sequence Transformer-based model for generating emotion-aligned music from a piece of text
- We also created Narrative2MIDI, a dataset of emotion-aligned music for narratives

DATASETS

Narrative2MIDI dataset

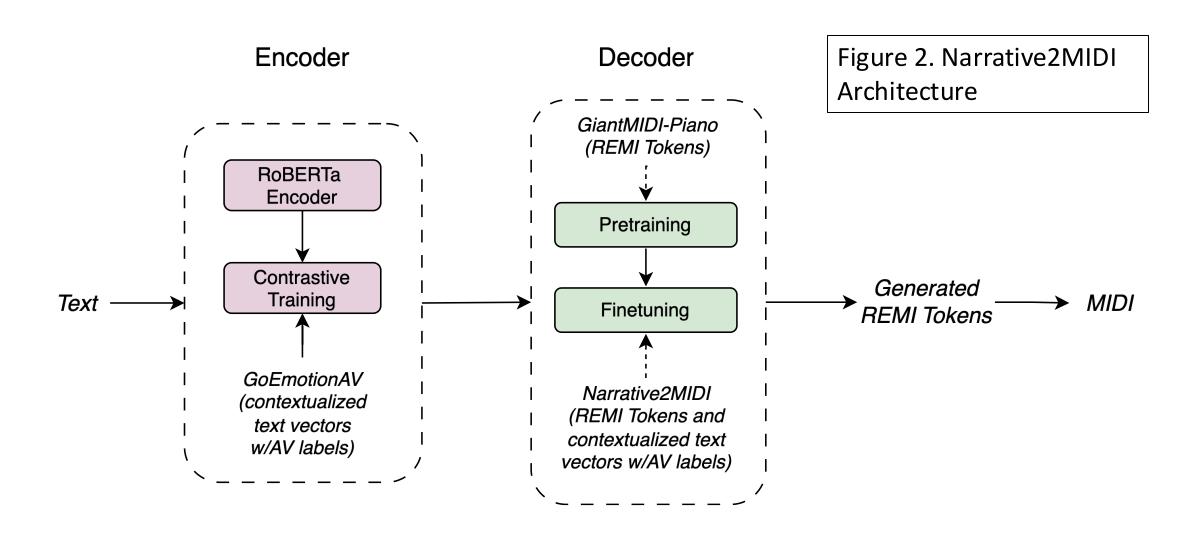
- GoEmotionsAV
 - GoEmotions [1] is 58k English Reddit comments with 27 emotion categories or neutral
 - Recoded categories into Arousal-Valence (AV) plane (Fig. 1)
- EMOPIA [2]
 - 1,087 MIDI files with Arousal-Valence quadrants
- End up with 1,087 < Narrative, MIDI file > pairs GiantMIDI-Piano dataset [3]
- 10k classical MIDI files for piano, used for pre-training



TRANSFORMER-BASED MODEL

We use an **encoder-decoder Transformer** [4], shown in Figure 2

- Encoder
 - Contrastive training to fine-tune RoBERTa-large to represent the narratives
 - 500 epochs training on final four layers
- Decoder
 - Pre-training on GiantMIDI-Piano
 - 250 epochs training
 - Fine-tuned on Narrative2MIDI
 - 300 epochs training on final layer



EVALUATION & RESULTS

Objective (Figure 3)

- Valence-Related Metric: Major Key Ratio
 - Prior work: major key = positive affect (Q1, Q4), minor key = negative (Q2, Q3)
 - Calculated key for each generated file using the Krumhansl-Kessler algorithm
 - Calculated the ratio of major key to minor key in each quadrant
 - Independent-samples t-test for Q1, Q4 vs Q2, Q3 were **significant** (p = 0.026)
- Arousal-related Metrics: Average Note Length
 - Expected to be higher in low arousal (Q3, Q4)
 - Independent-samples t-test for Q3, Q4 vs Q1, Q1 were significant (p < 0.01)
- Arousal-related Metrics: Average Note Velocity
 - Expected to be higher in high arousal (Q1, Q2)
 - Independent-samples t-test between Q3, Q4 vs Q1, Q1 were not significant

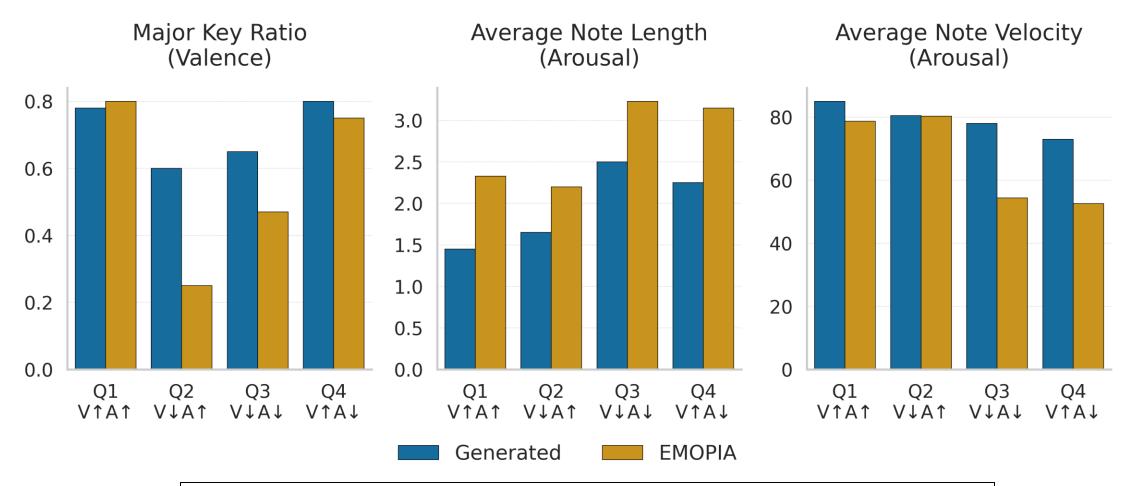


Figure 3. Valence and Arousal Metrics of Generated Files and EMOPIA

KEY REFERENCES

[1] Dorottya Demszky et al., "Goemotions: A dataset of fine-grained emotions," arXiv preprint arXiv:2005.00547, 2020.

[2] Hsiao-Tzu Hung et al, "Emopia: A multi-modal pop piano dataset for emotion recognition and emotion-based music generation," arXiv preprint arXiv:2108.01374, 2021

[3] Qiuqiang Kong et al., "Giantmidi-piano: A large-scale midi dataset for classical piano music," arXiv preprint arXiv:2010.07061, 2020.

[4] Ashish Vaswani et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017

Subjective (Table 1)

- We conducted a preliminary listening study with 3 participants
 - Participant was given two generated music clips
 - One clip was generated for that narrative with Narrative2MIDI
 - One decoy clip
 - Participant chose which clip matches the narrative

Dimension	Accuracy
Valence	0.53
Arousal	0.70
Valence+Arousal	0.40

Table 1. Preliminary Listening Study Results

CONCLUSIONS

- Objective evaluation of the generated music showed that it matched the note length characteristics of EMOPIA more than the valence characteristics or note velocity.
- A small-scale qualitative evaluation confirmed that the model is **better at capturing arousal** than valence
- Future work will include an expanded listening study

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation (NSF) award 2228910.

