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Purpose: To date, there are no automated tools for the identification and fine-
grained classification of paraphasias within discourse, the production of which 
is the hallmark characteristic of most people with aphasia (PWA). In this work, 
we fine-tune a large language model (LLM) to automatically predict paraphasia 
targets in Cinderella story retellings. 
Method: Data consisted of 332 Cinderella story retellings containing 2,489 
paraphasias from PWA, for which research assistants identified their intended 
targets. We supplemented these training data with 256 sessions from control 
participants, to which we added 2,415 synthetic paraphasias. We conducted 
four experiments using different training data configurations to fine-tune the 
LLM to automatically “fill in the blank” of the paraphasia with a predicted target, 
given the context of the rest of the story retelling. We tested the experiments’ 
predictions against our human-identified targets and stratified our results by 
ambiguity of the targets and clinical factors. 
Results: The model trained on controls and PWA achieved 50.7% accuracy at 
exactly matching the human-identified target. Fine-tuning on PWA data, with or 
without controls, led to comparable performance. The model performed better 
on targets with less human ambiguity and on paraphasias from participants with 
fluent or less severe aphasia. 
Conclusions: We were able to automatically identify the intended target of 
paraphasias in discourse using just the surrounding language about half of the 
time. These findings take us a step closer to automatic aphasic discourse anal-
ysis. In future work, we will incorporate phonological information from the para-
phasia to further improve predictive utility. 
Supplemental Material: https://doi.org/10.23641/asha.24463543 
Anomia or word-finding difficulty is a prominent 
and persistent feature of aphasia (Goodglass & Wingfield, 
1997) and manifests in all communicative contexts, from 
single-word responses to complex conversations. Given the 
ubiquitous nature of anomia, anomia assessments are 
given in most clinical settings and are of high practical 
value for quantifying performance and monitoring out-
comes. Typically, anomia assessments include confronta-
tion picture-naming tests (Rabin et al., 2005; Simmons-
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Mackie et al., 2005), in which a person with aphasia is 
asked to name a series of pictured objects and/or actions. 
The popularity of confrontation picture-naming tests can 
be attributed to their well-documented validity and reli-
ability (e.g., Roach et al., 1996; Strauss et al., 2006; 
Walker & Schwartz, 2012) and also to their relatively low 
testing burden, particularly in the context of short forms 
and simple accuracy scoring schemes. Other sources of 
diagnostic information such as discourse-level analyses 
may provide additional clinically useful information for 
completing a patient’s clinical profile (Fergadiotis et al., 
2019; Richardson et al., 2018), but such analyses are not 
performed routinely in clinical settings. Viewed through
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an implementation science lens (Breimaier et al., 2015; 
Damschroder et al., 2009), several barriers hinder the utili-
zation of discourse-based analyses including their com-
plexity, reliability, and time burden. The latter factor espe-
cially can be an insurmountable barrier for implementa-
tion in most real-world clinical settings. Therefore, there is 
a need to develop new approaches that will enable profes-
sionals to assess people with aphasia (PWA) in a more 
objective, precise, efficient, and ecologically valid manner. 

Computational methods, especially those from the 
field of natural language processing (NLP), have the poten-
tial to be essential tools in designing such approaches. 
Recent work has demonstrated these methods’ efficacy in 
automating certain aspects of confrontation naming test 
scoring (Casilio et al., 2023; Fergadiotis et al., 2016; 
McKinney-Bock & Bedrick, 2019; Salem et al., 2023; 
described later in more detail). In this work, we report on a 
crucial first step in applying such methods to discourse 
samples. Specifically, we describe the results of a computa-
tional model that analyzes the context in which a parapha-
sia occurs in a discourse sample and predicts the speaker’s 
intended word (or a set of possible intended words). Below, 
we describe the key role that this specific task of target 
word prediction plays in the clinical assessment of discourse 
samples from PWA, motivate our overall computational 
approach, and describe our model and its behavior. In 
addition, we evaluate the impact of clinical features of the 
speaker on our model’s ability to correctly predict target 
words. This part of the work highlights specific areas where 
current technology falls short and points to missing pieces 
that the field must address. 

Assessing Anomia at the Discourse Level 

It is well documented in the literature that the abil-
ity to produce discourse is what matters most to PWA 
and their families (Cruice et al., 2003; Mayer & Murray, 
2003). Yet, despite their popularity, there is evidence that 
confrontation naming tests cannot fully account for the 
severity and patterns of anomia exhibited during con-
nected speech. First, connectionist accounts of word 
retrieval at the discourse level highlight how lexical char-
acteristics of target words interact with activated represen-
tations within and across different linguistic levels (e.g., 
phonological, semantic; Bock, 1995; Dell, 1986; Dell 
et al., 1999; Levelt, 1999; Levelt et al., 1999; M. Schwartz 
et al., 2006). In addition, several models (e.g., MacDonald 
et al., 1994; Tabor et al., 1997) emphasize the influence 
and relative strength of naturally occurring probabilistic 
constraints on the activation of linguistic representations 
in language use. In fact, there seems to be a general 
consensus in recent empirical investigations that while 
performance in confrontation naming tests is related to 
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discourse-level performance, analyzing discourse directly 
may provide unique and useful clinical insights not gained 
via confrontation naming tests (Fergadiotis et al., 2019; 
Hickin et al., 2001; Mayer & Murray, 2003; Pashek & 
Tompkins, 2002). Therefore, relevant assessment tools for 
aphasia should (a) operate at the discourse level, (b) be 
able to capture changes in language skills over time, and 
(c) be routinely included as therapy outcome measures. 

At the level of single words, anomia severity is com-
monly assessed using picture-naming tests and reported 
in terms of overall accuracy scores or ability estimates. 
Furthermore, a more in-depth analysis of the types and 
frequencies of word production errors can reveal which 
linguistic processes that support word access and retrieval 
are more or less disrupted (Dell et al., 1997). Theoretical 
accounts of word production allow professionals and/or 
algorithms to classify an individual’s collection of 
paraphasias in order to create a detailed profile of that 
individual’s anomia. This paraphasia classification pro-
cess requires a series of binary judgments with regard to 
the paraphasia and its relationship to the intended target 
word. Specifically, those judgments are (a) lexicality, that 
is, whether or not the paraphasia is a real word; (b) 
semantic similarity, that is, whether or not the parapha-
sia is semantically related to the target; and (c) phonolo-
gical similarity, that is, whether or not the paraphasia is 
phonologically related to the target. To highlight a cou-
ple of classification examples, a semantic paraphasia is a 
real word that is semantically related to its intended tar-
get but phonologically unrelated (e.g., “beard” for “mus-
tache”), whereas a neologism is a nonword, not semanti-
cally related by definition, that is phonologically related 
to the target (e.g., “mustaff” for “mustache”). Lexical or 
real-word paraphasias are understood to represent mostly 
impairments in lexical–semantic access, while nonword 
paraphasias are thought to reflect deficits in phonological 
encoding (Dell et al., 2007, p. 493). To help make this 
time- and labor-intensive assessment process more effi-
cient and therefore more feasible for clinical settings, our 
research team has developed a paraphasia classification 
algorithm called ParAlg (Paraphasia Algorithms) that 
automatically classifies word production errors in the con-
text of object picture-naming tests (Casilio et al., 2023; 
Fergadiotis et al., 2016; McKinney-Bock & Bedrick, 2019; 
Salem et al., 2023). ParAlg’s paraphasia classifiers algo-
rithmically mirror the main paraphasia classification cri-
teria of the Philadelphia Naming Test (Roach et al., 
1996), which includes one of the most well-established and 
thorough frameworks for error classification during object 
picture naming. 

The accuracy of this multistep paraphasia classifica-
tion process, however, is entirely predicated on success-
fully identifying a given paraphasia’s intended target.
•4949–4966 December 2023



Target identification is relatively straightforward in the 
context of confrontation picture-naming tests, where the 
target is presumed to be the word depicted in the picture, 
but in the context of discourse, determining the target is 
not as straightforward. Researchers and clinicians under-
take this task by applying background knowledge of 
word production disorders and common anomic patterns 
(Martin, 2017), as well as general knowledge of the dis-
course task itself, such as the expected lexicon and the 
expected temporal arrangement of that lexicon given the 
overall narrative structure. Furthermore, target prediction 
can incorporate a multitude of localized contextual factors 
such as timely gestures, retracings from the paraphasia to 
or toward the intended target, phonological fragments or 
false starts leading up to the paraphasia, syntactic/ 
semantic information immediately surrounding the para-
phasia, and/or semantic and phonological similarities 
between the paraphasia and its working hypothesis target. 

In light of this highly variable and complex process, 
the preliminary focus of this automation work and of this 
article is to leverage and model the semantic information 
surrounding word production breakdowns. Elegantly 
enough, this approach mirrors widely accepted models of 
spoken word production, such as Dell’s model described 
earlier where Step 1 involves identification and activation 
of semantic representations surrounding the target word. 
One additional and imminent aim of this work, although 
outside the scope of this article, is the exploration of a 
more fully automated and naturalistic application of 
ParAlg—classification of paraphasias in discourse using 
machine-generated targets. While this article explores 
automatic target prediction for a full range of content 
words (nouns, verbs, adverbs, adjectives), we do not 
anticipate being able to classify paraphasias with non-
noun targets until equally robust psycholinguistic models 
are developed for additional parts of speech. 

Novel Approaches for Assessing Paraphasias 
at the Discourse Level 

Given the resource-intensive nature of discourse 
analysis, several computational approaches have been 
developed to assist researchers and clinicians in analyzing 
discourse such as automated speech and language mea-
sures (e.g., Bryant et al., 2013; Chatzoudis et al., 2022; 
Day et al., 2021; Fergadiotis & Wright, 2011; Forbes 
et al., 2014; Miller & Iglesias, 2012). An active area of 
research is establishing automatic speech recognition 
(ASR) systems that are effective on aphasic speech (e.g., 
Gale et al., 2022; Le & Provost, 2016; Perez et al., 2020), 
some of which are developed and used for diagnosing 
aphasia or aphasia subtypes (e.g., Fraser et al., 2013; Le 
et al., 2018). Some preliminary attempts have been made 
Sa
at automated classification of paraphasias in connected 
speech, but these studies have focused solely on the task 
of detecting paraphasias and determining if they are real 
words or neologisms (Le et al., 2017; Pai et al., 2020), as 
opposed to complete classification. Despite the recent 
advances in automated approaches, to date, there are no 
computer-assisted discourse analyses for the identification 
and fine-grained classification of paraphasias, the produc-
tion of which is the hallmark characteristic of most PWA. 

Our first attempts at predicting targets of parapha-
sias in discourse were made using more traditional n-gram 
and early neural net-based language models (Adams et al., 
2017), but since then, there have been significant develop-
ments in the field of language modeling. In this work, to 
automatically predict the intended targets of paraphasias 
in discourse using the surrounding language, we use a 
machine learning–based transformer language model. 
Transformer models were first introduced in 2017 (Vaswani 
et al., 2017) and have since become ubiquitous in NLP 
research due to their high performance; their structure 
allows them to be trained on large-scale data sets with 
graphical processing units. The introduction of transformer 
models led to the development of BERT (Bidirectional 
Encoder Representations from Transformers; Devlin et al., 
2019), a large language model (LLM) that has been suc-
cessful on a variety of NLP tasks such as Google search, 
text summarization, and question answering (Devlin et al., 
2019; Liu & Lapata, 2019; B. Schwartz, 2020). BERT is 
designed to be pretrained on a very large-scale general-
purpose data set and can then be used in its off-the-shelf 
pretrained format, or one can use transfer learning to adapt 
it for a specific domain and task with a process called fine-
tuning. During fine-tuning, the model is trained further on 
a downstream task with domain-specific data. As discussed 
in Zaheer et al. (2020), this process allows the models to 
work well even on tasks with fewer data resources. 

LLMs have been successfully applied to a variety of 
biomedical language tasks. For example, by fine-tuning 
BERT with PubMed abstracts and clinical notes, Peng 
et al. (2019) outperformed previous state-of-the-art bench-
marks on five biomedical tasks (e.g., similarity of two sen-
tences from Mayo Clinic clinical data). Researchers have 
also found success applying these models to clinical lan-
guage research. For instance, Balagopalan et al. (2020) 
fine-tuned BERT to detect Alzheimer’s disease from tran-
scribed spontaneous speech. They found that BERT per-
formed better than a standard model based on hand-
crafted features. Gale et al. (2021) fine-tuned a variation 
of BERT called DistilBERT (Sanh et al., 2019) to auto-
matically score commonly used expressive language tasks 
on a diverse group of children (autism spectrum disorder, 
attention-deficit/hyperactivity disorder, developmental 
language disorder, and typical development; age of 5–
lem et al.: Predicting Targets for Paraphasias in Discourse 4951



9 years) with high accuracy (83%–99%). In previous 
work developing ParAlg, our group fine-tuned Distil-
BERT to automatically determine the semantic similarity 
of lexical paraphasias to the target word with 95.3% 
accuracy (Salem et al., 2023). 

While models like BERT have been very successful, 
one drawback is that they are designed for relatively short 
sequences of words; in fact, BERT cannot process input 
sequences of text longer than 512 tokens. Our data, which 
consist of retellings of the Cinderella story, include many 
sessions longer than that limit. In this work, we instead 
use a recent LLM called BigBird (Zaheer et al., 2020), 
which was specifically designed to address this limitation 
of BERT. Importantly, BigBird, like its predecessor 
BERT, was trained using “masked language modeling,” a 
type of sentence cloze task. In this task, randomly selected 
words from the corpus are masked (i.e., removed and 
replaced with a special blank token [MASK]), and the 
model learns to fill in the blank and predict those masked 
words using the surrounding context, allowing it to learn 
what words occur in what contexts. This task is in fact 
similar to our task at hand: We want to predict what tar-
get word a person with aphasia was intending to say, 
given the context of their discourse. Thus, considering 
the wide success of LLMs, the adaptation of this model 
to long sequences, and the similarity of its training pro-
cess to our task, we hypothesized that BigBird would be 
a good fit for automatically predicting paraphasia targets 
in discourse. 

Given that this study represents a novel application 
of an LLM to data from a clinical population, it is worth-
while to explore factors that might influence the accuracy 
of that approach. It is generally accepted that PWA repre-
sent a heterogeneous group in terms of the nature and 
severity of deficits exhibited during discourse production. 
For example, some individuals on the mild end of the 
ability continuum may present with well-constructed utter-
ances during connected speech with only occasional hesi-
tations and single-word paraphasias. On the other hand, 
people on the more severe end of the distribution may 
exhibit morphosyntactic disturbances as well as significant 
manifestations of word retrieval deficits including aban-
doned phrases, revisions, retracings, reformulations, and 
multiple paraphasias. Therefore, given that the LLM relies 
on the surrounding context of a masked word for predic-
tion, it is conceivable that the success of the model may 
depend on the overall aphasia severity of the speaker. In 
addition to overall aphasia severity, the predictive utility 
of the LLM may also depend on the nature of the syntac-
tic deficits exhibited by PWA. Specifically, connected 
speech from PWA can be characterized as agrammatic or 
paragrammatic (Butterworth & Howard, 1987; Goodglass, 
1993; Saffran et al., 1989; Thompson et al., 1997). 
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Agrammatic speech is typically characterized by an overall 
reduction of grammatical morphology, simplification of 
syntactic structure, and overreliance on content words, 
primarily nouns. On the other hand, paragrammatism is 
associated with misuse of grammatical aspects including 
inflectional morphology, significant word substitutions 
that cross word class, and pronounced errors in word 
ordering. Finally, during discourse production, there are 
instances where a speaker’s intended target is clear, but 
that is not always the case, and different raters can dis-
agree. In this study, in addition to clinical factors, we 
investigated the performance of our LLM as a function of 
the certainty with which human raters can perform the 
same task. 

Purpose of Study 

The purpose of this study was to create a baseline 
model for automated target word prediction of parapha-
sias within spoken discourse using the surrounding lan-
guage alone. We fine-tuned the LLM BigBird to predict 
the intended target word of paraphasias within transcripts 
of the Cinderella story retell task using data from con-
trols, PWA, and a combination. We compared the various 
models’ accuracy at predicting the correct target word that 
the human raters identified. We hypothesized that fine-
tuning the LLM using task data from control participants 
as well as PWA would lead to the highest accuracy. Addi-
tionally, we evaluated the impact of clinical characteristics 
and human certainty of target prediction on the model 
performance. These aims can be summarized in two 
research objectives: (a) assess the feasibility of applying a 
modern LLM to this task and establish a performance base-
line and (b) explore the impact of clinical factors (specifically 
fluency and aphasia severity) and intended target ambiguity 
(according to human raters) on model performance. 
Method 

Data 

Data consisted of 332 Cinderella story retelling tran-
scripts from 240 PWA from the English AphasiaBank 
database (MacWhinney et al., 2011). In this task, partici-
pants are first given a wordless picture book of the 
Cinderella fairytale to briefly review and then are given a 
few minutes to recite the story from memory. Demo-
graphic and clinical information on these 240 participants 
at their first session are shown in Table 1. We also supple-
mented these data with 256 transcripts from control par-
ticipants without aphasia in AphasiaBank. Our data prep-
aration pipeline is illustrated in Figure 1. More details are 
provided in the sections below.
•4949–4966 December 2023



Table 1. Clinical and demographic information for the 240 partici-
pants at their first session. 

Characteristic Value 

Age (years) 

M (SD) 61.478 (12.494) 

Min–max 25.600–91.718 

)Missing (n 23

Gender 

Male (n) 124 

)Female (n 96

)Missing (n 20

Race 

White (n) 189 

)African American (n 23

)Asian (n 2

)Hispanic/Latino (n 4

Native Hawaiian/Pacific 
Islander (n) 

1 

)Mixed (n 1

)Unavailable (n 20

Education (years) 

M (SD) 15.439 (2.811) 

Min–max 8.000–25.000 

)Missing (n 28

Aphasia duration 

M (SD) 5.389 (4.731) 

Min–max 0.080–30.000 

)Missing (n 24

WAB-R AQ 

M (SD) 72.771 (17.659) 

Min–max 10.800–99.600 

)Missing (n 11

BNT-SF 

M (SD) 7.517 (4.475) 

Min–max 0.000–15.000 

)Missing (n 31

VNT 

M (SD) 15.200 (6.084) 

Min–max 0.000–22.000 

)Missing (n 31

Note. BNT-SF refers to the raw score from the Boston Naming 
Test–Short Form (Kaplan et al., 2001). VNT refers to the 
raw score from the Verb Naming Test (Cho-Reyes et al., 2012). 
WAB-R AQ = Western Aphasia Battery–Revised Aphasia Quotient 
(Kertesz, 2012). 

1 Although the content of the transcripts is based on the AphasiaBank 
database on May 4, 2022, we applied updates to the clinical scores 
that were unavailable on AphasiaBank until December 2022. 
Paraphasia Identification 
Archival audiovisual recordings and CHAT (Codes 

for the Human Analysis of Transcripts) transcript files 
(MacWhinney, 2000) of the Cinderella story retell task 
were retrieved from the English AphasiaBank database 
on May 4, 2022, for any and all PWA whose sample 
contained at least one word-level error as annotated by 
Sa
 

 

 

 

 

 

 

 

 

 

 

 

 

AphasiaBank.1 We defined paraphasias as word-level 
errors made to the lemma of content words (i.e., nouns, 
verbs, adjectives, adverbs) and excluded from target pre-
diction all other kinds of word-level errors, including those 
related to disfluency, morphological markings (e.g., plural-
ity, tense), and noncontent words (e.g., articles, pronouns). 
Referencing the CHAT manual (MacWhinney, 2000) 
accessed on April 13, 2022, we developed a list of word-
level error codes for preliminary inclusion and exclusion. 

Target Identification 
To our knowledge, there currently are no established 

guidelines for determining ground truth targets for para-
phasias in discourse. In this section, we describe our pro-
cess for determining ground truth targets for paraphasias 
in Cinderella story retellings from AphasiaBank by resolv-
ing targets from multiple human raters. The task instruc-
tions we provided to the research assistants are included 
in Supplemental Material S1. Details on resolution are 
provided below. 

Target words were identified and annotated in 
ELAN transcription software (Version 6.2; The Language 
Archive, 2021), using custom-generated templates that 
also allowed for review of the retellings’ transcripts as well 
as playback of audiovisual recordings. To maximize tran-
script readability and efficacy for this task, AphasiaBank 
transcripts were preprocessed to remove from view addi-
tional annotations irrelevant to the task (e.g., utterance-
level error coding) as well as the original annotator’s tar-
get prediction, if provided. 

Target word identifications were completed by five 
trained student research assistants in a pseudorandom 
order under the supervision of a research speech-language 
pathologist (SLP), resulting in a total of three independent 
target identifications for each paraphasia. Research assis-
tants were instructed to watch the audiovisual recordings 
of the Cinderella story retelling task and make their para-
phasia target predictions based on a number of contextual 
factors, including background knowledge related to word 
production disorders and the Cinderella story. For each 
identified target, a confidence rating ranging from 1 to 4 
was assigned with 1 = very unconfident, 2 =  unconfident, 
3 =  confident, and 4 = very confident. In the process, 
research assistants flagged for potential exclusion any 
word errors believed to be outside the scope of this project 
(e.g., the predicted target is not a noun, verb, adjective, or 
adverb) or produced in the context of a personal commen-
tary (e.g., a comment about the difficulty of the task, per-
formance on the task).
lem et al.: Predicting Targets for Paraphasias in Discourse 4953



Figure 1. Data preparation pipeline. CHAT = Codes for the Human Analysis of Transcripts (a format for transcription); PWA = people with aphasia. 

Table 2. Human reliability of target identification. 

Paraphasias, N Characteristic Value 

3,119 Identifiable 

Target known (n) 2,489 

Target unknown (n) 630 

% identifiable 79.8% 

2,489 Agreement (%) 

M (SD) 76.8% (27.9%) 

Median 75% 

Min–max 0%–100% 

N = 100% 1,244 

N < 100% 1,245 

2,489 Average confidence (1–4) 

M (SD) 3.17 (0.77) 

Median 3.33 

Min–max 1–4 

N > median 1,089 

N ≤ median 1,400 

Note. Agreement and confidence characteristics are calculated 
for the 2,489 identifiable targets.
Identified targets from our research assistants as well 
as AphasiaBank annotators were automatically extracted 
and compiled for side-by-side comparison and resolution in 
a spreadsheet. Discrepancies in target words and word 
errors flagged for exclusion were resolved by a research 
SLP to arrive at a single, best target identification. If 
there was universal agreement among all three raters and 
AphasiaBank, then that target was not subject to resolu-
tion. When there were multiple viable targets, the research 
SLP would use information such as the participant having 
actually said one of the target choices earlier in the tran-
script or a certain target being more contextually common, 
to decide on a final top choice. If there was disagreement 
among raters, rater confidence was low, and the resolver 
could not arrive at a suitable prediction upon review, then 
the target was listed as “unknown.” We calculated average 
confidence scores (between the three research assistants) 
and percent agreement (between the three research assis-
tants and the original AphasiaBank target, where available) 
for each identified target. Characteristics of human reliability 
in target identification (percent identifiable, agreement levels, 
confidence levels) are shown in Table 2. Out of 3,119 para-
phasias, we were able to resolve targets for 79.8% of them. 
On these 2,489 paraphasias with resolved targets, average 
percent agreement was 76.8%, and average confidence was 
• •4954 Journal of Speech, Language, and Hearing Research Vol. 66
3.17. After filtering to content word paraphasias and exclud-
ing paraphasias with unknown targets, we were left with 332 
Cinderella story sessions from 240 participants, with a total 
of 2,489 paraphasias. 
•4949–4966 December 2023



Session Text Cleaning 
We compiled our target identifications as well as 

human rater confidence and percent agreement in the 
CHAT file format. We added our annotations within the 
“comment on main line” markers specified in the CHAT 
manual, formatted in a structured notation (YAML), 
which can be parsed in common programming languages 
such as Python. The following example shows one such 
transcript, with our additional annotations highlighted in 
boldface type: 
• •

*PAR: and she rode off with the pɪnts@u [: prince] 
[% {target: a, agreement: 1.0, confidence: 3.33}] 
[* p:n] .  680333_684666 
To prepare the transcripts for use with our LLM, 
we automated a process to convert the transcripts to a 
more natural-looking written English. Motivated by the 
long-term goal of a fully automated anomia system, we 
generally aimed to prepare the transcripts to look like 
those an ASR system would produce. Markings indicating 
prosodic (e.g., pauses) and paralinguistic details (e.g., ges-
tures) were removed. The CHAT format also uses special 
markers to indicate phenomena peculiar to the spoken 
modality, such as retracing and repeats. For situations like 
these, we omitted the special markers but retained most of 
the spoken content, although we discarded extraneous 
words that could be identified by simple rules (e.g., a list 
of filler words like “um”). 

In the AphasiaBank files, the transcripts are seg-
mented into units called “utterances” or “conversational 
units.” These units look similar to sentences—they are 
delimited by periods—but tend to be shorter and more 
fragmentary, owing to the inherent differences between 
spoken and written language. Especially as compared to 
the written text used to pretrain LLMs, the utterance seg-
mentation guidelines laid out by the CHAT manual would 
not reliably contain a substantial amount of semantic con-
text for our masked word prediction task. So, while popu-
lar LLMs (e.g., BERT) typically process a sentence or 
two at a time, our transcripts do not divide cleanly 
into sentences. Rather than attempt to redraw the 
AphasiaBank-provided utterance boundaries to suit our 
task, we chose to prepare our data with a full context. In 
other words, for each paraphasia shown to the LLM, the 
model was working with a participant’s complete retelling 
of the Cinderella story. 

Each paraphasia was prepared for training or testing 
by replacing it with a “blank” token (also known as a 
“mask”) and filling in the other paraphasias in the session 
with the human-identified target word. The following 
example from above illustrates the cleaned sentence in 
Sa
context, where the paraphasia has been replaced with a 
mask token: 
lem et
. . .and then and and she put her foot in the. and she 
rode off with the [MASK]. Cinderella was pretty 
girl. . .  
During fine-tuning and testing, the model learned to 
fill in the blank of the mask token with the most likely 
word (“prince”) given the context of the rest of the 
Cinderella story retelling. 

Data Splitting 
We used 10-fold cross-validation of the PWA data 

in order to reduce model overfitting. That is, we divided 
the 2,489 instances into 10 groups and trained 10 separate 
models for each experiment, in each of which one group 
was held out as testing data. This was done in such a way 
that, for each of the 10 iterations, a participant’s responses 
were only in either the training data or the testing data to 
prevent the models from learning participant-specific 
information, and the distribution of Western Aphasia 
Battery–Revised (WAB-R; Kertesz, 2012) Aphasia Quo-
tient (AQ) scores in training and testing was as close as 
possible. When evaluating overall performance, the results 
from the 10 test set splits were concatenated, and perfor-
mance on the entire set of 2,489 paraphasias was examined. 
The same 10-fold splits were used for all experiments. 

Control Data Augmentation 
To add additional training data for our experiments 

and reduce overfitting, we conducted data augmentation 
(a method of adding synthetic data; see Feng et al., 2021, 
for more background) on sessions of the Cinderella retell-
ing task from control participants without aphasia. We 
retrieved all files in AphasiaBank from control partici-
pants with a Cinderella story task on April 12, 2022, and 
added synthetic paraphasias to these sessions. For each 
session, for each utterance spoken by the participant, with 
a 20% chance, we randomly assigned a content word (one 
of the following: noun, verb, adjective, or adverb) to be a 
“paraphasia” to be predicted. This left a control data set 
with 256 sessions from 248 participants, with a total of 
2,415 synthetic paraphasias, which was very close to the 
number of paraphasias from the PWA data (2,489). We 
cleaned and prepared these sessions using the same pro-
cess as for PWA data, described in the Session Text 
Cleaning and Data Splitting subsections. 

Model Training and Experiments 

In all experiments, we used a pretrained version of 
the LLM BigBird (Zaheer et al., 2020). This model is a
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machine learning–based transformer model. Specifically, it 
is a sparse-attention version of BERT designed for longer 
sequences of text. As previously mentioned, it was pre-
trained with masked language modeling. During masked 
language model training, the model is given sentences 
from the corpus where 15% of the tokens are masked (i.e., 
removed and replaced with a special nonword token, 
“[MASK]”), and the model attempts to predict what those 
masked words were given the context of the surrounding 
sentence. By doing this on the whole corpus of sentences, 
the model learns what words occur in what contexts. We 
accessed this pretrained BigBird LLM from the Hugging 
Face Transformers library (Wolf et al., 2020). 

For each experiment (excluding the two baseline 
experiments), we fine-tuned the LLM using another 
masked language modeling task. Specifically, given the 
context of the whole Cinderella story transcript, the model 
tried to fill in the blank of the mask token with the 
intended target.2 The model then compared that predic-
tion with the human-resolved ground truth intended target 
(or, for control participants, the original word) and 
learned from its correct and incorrect predictions. Impor-
tantly, we used this fill-in-the-blank structure (i.e., we did 
not provide the paraphasia itself to the model) because 
current LLMs are designed for doing masked language 
modeling, and furthermore, they are not currently 
designed for accepting phonemic transcriptions, which 
would be required for non–real-word paraphasias. The 
fine-tuning process was repeated on the whole training 
data set until early stopping occurred, meaning perfor-
mance stopped improving on a small portion of the test-
ing data that was held out. Once the model was fine-
tuned, we tested it on either the PWA paraphasias or the 
synthetic control paraphasias, which were prepared in 
the same way as the training data, with each paraphasia 
sequentially replaced with a mask and all others filled in 
with their target. At test time, we pulled out the model’s 
top prediction, as well as its 19 next most likely predic-
tions, giving us its Top 20 predictions for the target, 
sorted from most likely to least likely. We considered 
more than just the top prediction because there is inher-
ent ambiguity in target identification, and in future work, 
we may consider multiple possible targets when classify-
ing paraphasias in discourse. 

We conducted six experiments using different prepa-
rations of training data, which are summarized in Table 3. 
In Experiment 1, we used the pretrained BigBird model 
• •

2 There exist certain subtleties to how this is done at a technical level, 
which we describe in detail in the Appendix. The precise manner in 
which we performed our masking, and ensuing prediction experi-
ments, would be slightly different had we chosen a different neural 
model, but the overall methodology would be the same. 
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without any fine-tuning using Cinderella story data. We 
considered this our “baseline” model to beat. In Experi-
ment 2, we fine-tuned the LLM using just the Cinderella 
story sessions from control participants with synthetic 
paraphasias. In Experiment 3, the pretrained model was 
fine-tuned using Cinderella story sessions from PWA. 
Finally, in Experiment 4, the model was fine-tuned using 
a combined data set of control participant data and PWA 
data. Experiments 1–4 were evaluated on testing data 
from PWA. As an auxiliary comparison, we also evalu-
ated two models on control participant data. In Experi-
ment 5, we used the same baseline model as in Experiment 
1 (pretrained BigBird) but tested it on the control data. 
Finally, in Experiment 6, we trained on control data (like 
in Experiment 2) but tested it on the control data as well. 

Evaluation 

We evaluated performance of the six experiments 
using accuracy. We calculated the accuracy of “exact 
match” between the model’s top predicted intended word 
and the human-determined target word by counting up 
the number of matches and dividing by the total number 
of test instances. Additionally, we calculated the accuracy 
within the Top 1–20 model predictions. That is, we 
counted up how many times out of all test instances the 
human-determined target word was the top model predic-
tion (i.e., Top 1 or exact match); the first or second model 
prediction (Top 2); the first, second, or third model pre-
diction (Top 3); and so on for up to 20 chances to predict 
the right target. We primarily compared accuracy within 
one chance (exact match) and accuracy within five 
chances for the six experiments. We determined whether 
disagreements between exact match accuracy of the 
models were significant using McNemar’s test with conti-
nuity correction (McNemar, 1947). 

First, we calculated accuracy on all 2,489 parapha-
sias. For Experiments 1–4 (evaluated on PWA data), to 
determine what factors influenced model performance, we 
also calculated accuracy within exact match and within 
five chances on several different test set stratifications for 
each model. We calculated performance separately on ses-
sions from participants with WAB-R AQ above or below 
the median, participants with fluent aphasia (Wernicke’s, 
anomic, conduction, or transcortical sensory aphasia, or 
those considered “nonaphasic” by the WAB-R) and non-
fluent aphasia (Broca’s, global, or transcortical motor 
aphasia), test instances where the human raters had high 
confidence (above median) or low confidence (below 
median) in intended target determination, and test 
instances where human raters had perfect agreement in 
determining the intended target or imperfect agreement. 
We tested whether differences in performance between
•4949–4966 December 2023



Table 3. Descriptions of Experiments 1–6. 

Experiment 
number Experiment name Description Training data Testing data 

1 Baseline Pretrained LLM, without any 
fine-tuning to our data 

N/A PWA testing data 

2 Controls Pretrained LLM, fine-tuned 
using all data from the 
control participants of the 
Cinderella story task 

Control training data PWA testing data 

3 PWA Pretrained LLM, fine-tuned 
using all PWA data from 
the Cinderella story task 

PWA training data PWA testing data 

4 Controls + PWA Pretrained LLM, fine-tuned 
using all data from the 
control participants and 
PWA, from the Cinderella 
story task 

Control training data + PWA 
training data 

PWA testing data 

5 Baseline, tested on controls Pretrained LLM, without any 
fine-tuning to our data, 
evaluated on controls 
instead of PWA 

N/A Control testing data 

6 Controls, tested on controls Pretrained LLM, fine-tuned 
using all data from the 
control participants of the 
Cinderella story task 

Control training data Control testing data 

Note. LLM = large language model; N/A = not applicable; PWA = people with aphasia. 
these stratifications were significant using two-sided z tests 
for independent proportions. Throughout, a p value of 
< .05 was retained as a level of statistical significance. 
Results 

Accuracy results from Experiments 1–4 are shown 
in Tables 4, 5, 6, and 7, respectively. Experiment 1, our 
baseline model, achieved 25.5% exact match accuracy on 
all paraphasias; Experiment 2, the model fine-tuned on 
control data, achieved 35.0% exact match accuracy; 
Table 4. Experiment 1: baseline. 

Test set Number of paraphasias

All paraphasias 2,489

Human agreement = 100% 1,244

Human agreement < 100% 1,245

Human confidence > median (3.3) 1,089

Human confidence ≤ median (3.3) 1,400

WAB-R AQ > median (74.6) 1,039

WAB-R AQ ≤ median (74.6) 1,076

Fluent participants 1,666

Nonfluent participants 449

Note. Fluent participants are those with Wernicke’s, anomic, conductio
sic” by the WAB-R. Nonfluent participants are those with Broca’s, global
had unavailable WAB-R results and were excluded just from analyses inv
model prediction of target word matching the human-identified target wo
being one of the Top 5 model predictions. WAB-R AQ = Western Aphasia

Sa
Experiment 3 (fine-tuned on PWA data) achieved 49.7% 
exact match accuracy; and Experiment 4 (fine-tuned on 
control plus PWA data) achieved 50.7% exact match accu-
racy, 25.2 points above the baseline model. According to 
McNemar’s test, exact match accuracy levels in Experi-
ments 3 and 4 were significantly different than those of 
both Experiment 1 (the baseline model) and Experiment 
2, all with p < .001. Experiment 3’s exact match accuracy 
was not significantly different from Experiment 4’s exact 
match accuracy (p = .181). 

Figure 2 shows accuracy within the Top 20 model 
predictions for Experiments 1–4. Accuracy of all
Accuracy of exact match Accuracy within five 

0.255 0.379 

0.309 0.405 

0.201 0.352 

0.319 0.418 

0.206 0.348 

0.294 0.410 

0.204 0.324 

0.261 0.385 

0.198 0.298 

n, or transcortical sensory aphasia, or those considered “nonapha-
, or transcortical motor aphasia. Forty-six out of 332 total sessions 
olving WAB-R scores. “Accuracy of exact match” refers to the top 
rd. “Accuracy within five” refers to the human-identified target word 
 Battery–Revised Aphasia Quotient (Kertesz, 2012). 
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Table 5. Experiment 2: fine-tuned on control data. 

Test set Number of paraphasias Accuracy of exact match Accuracy within 5 

All paraphasias 2,489 0.350 0.511 

Human agreement = 100% 1,244 0.435 0.582 

Human agreement < 100% 1,245 0.265 0.441 

Human confidence > median (3.3) 1,089 0.450 0.601 

Human confidence ≤ median (3.3) 1,400 0.272 0.441 

WAB-R AQ > median (74.6) 1,039 0.401 0.562 

WAB-R AQ ≤ median (74.6) 1,076 0.292 0.458 

Fluent participants 1,666 0.363 0.532 

Nonfluent participants 449 0.283 0.425 

Note. Fluent participants are those with Wernicke’s, anomic, conduction, or transcortical sensory aphasia, or those considered “nonapha-
sic” by the WAB-R. Nonfluent participants are those with Broca’s, global, or transcortical motor aphasia. Forty-six out of 332 total sessions 
had unavailable WAB-R results and were excluded just from analyses involving WAB-R scores. “Accuracy of exact match” refers to the top 
model prediction of target word matching the human-identified target word. “Accuracy within 5” refers to the human-identified target word 
being one of the Top 5 model predictions. WAB-R AQ = Western Aphasia Battery–Revised Aphasia Quotient (Kertesz, 2012). 
experiments saw the sharpest increase within the Top 1 
(exact match) and Top 5 model predictions and then a 
slower increase when allowing the remaining 15 chances 
to find the correct target. As stated previously, Experi-
ments 3 and 4 achieved the highest performance with 
49.7% and 50.7% exact match accuracy, respectively, on 
all paraphasias. Considering within-five accuracy, Experi-
ment 4 obtained 69.5% accuracy within its Top 5 predic-
tions, which was 1 point higher than Experiment 3, which 
obtained 68.3% accuracy within Top 5 predictions. 
Regardless of the number of top predicted targets we con-
sidered, the baseline performed the lowest, followed by 
Experiment 2 (trained on controls), and then the two 
experiments fine-tuned with PWA data were our highest 
performing models. When looking across accuracy within 
Top 1–20 predictions, the difference in performance 
between Experiment 3 (fine-tuned on PWA data) and 
Experiment 4 (fine-tuned on PWA and control data) was 
an increase of just 2 points or less. These findings indicate 
• •

Table 6. Experiment 3: fine-tuned on people with aphasia data. 

Test set Number of paraphasias

All paraphasias 2,489

Human agreement = 100% 1,244

Human agreement < 100% 1,245

Human confidence > median (3.3) 1,089

Human confidence ≤ median (3.3) 1,400

WAB-R AQ > median (74.6) 1,039

WAB-R AQ ≤ median (74.6) 1,076

Fluent participants 1,666

Nonfluent participants 449

Note. Fluent participants are those with Wernicke’s, anomic, conductio
sic” by the WAB-R. Nonfluent participants are those with Broca’s, global
had unavailable WAB-R results and were excluded just from analyses inv
model prediction of target word matching the human-identified target wo
being one of the Top 5 model predictions. WAB-R AQ = Western Aphasia
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that performance between these two models was not sig-
nificantly different. So, without loss of generality, we dis-
cuss Experiment 4 in more detail below. 

We explored the impact of clinical factors and 
intended target ambiguity on model performance by 
sequentially calculating accuracy of the test set stratified 
by these factors. Considering exact match accuracy, per-
formance in Experiment 4 was higher (63.7%) on the 
paraphasias with targets humans all agreed upon and 
lower (37.6%) on the paraphasias with less-than-perfect 
agreement. A similar pattern emerged for human confi-
dence, with higher accuracy (65.1%) on paraphasias with 
targets humans were more confident at identifying and 
lower accuracy (39.4%) on targets with lower human con-
fidence. We also saw higher performance on sessions 
where the participant had a WAB-R AQ higher than the 
median (55.6% accuracy) versus those where the partici-
pant had a WAB-R AQ below the median (46.3%
•

Accuracy of exact match Accuracy within 5 

0.497 0.683 

0.623 0.787 

0.372 0.579 

0.635 0.787 

0.390 0.602 

0.549 0.710 

0.446 0.651 

0.511 0.694 

0.441 0.630 

n, or transcortical sensory aphasia, or those considered “nonapha-
, or transcortical motor aphasia. Forty-six out of 332 total sessions 
olving WAB-R scores. “Accuracy of exact match” refers to the top 
rd. “Accuracy within 5” refers to the human-identified target word 
 Battery–Revised Aphasia Quotient (Kertesz, 2012). 

4949–4966 December 2023



Table 7. Experiment 4: fine-tuned on control and people with aphasia data. 

Test set Number of paraphasias Accuracy of exact match Accuracy within 5 

All paraphasias 2,489 0.507 0.695 

Human agreement = 100% 1,244 0.637 0.796 

Human agreement < 100% 1,245 0.376 0.594 

Human confidence > median (3.3) 1,089 0.651 0.807 

Human confidence ≤ median (3.3) 1,400 0.394 0.607 

WAB-R AQ > median (74.6) 1,039 0.556 0.736 

WAB-R AQ ≤ median (74.6) 1,076 0.463 0.661 

Fluent participants 1,666 0.525 0.717 

Nonfluent participants 449 0.450 0.626 

Note. Fluent participants are those with Wernicke’s, anomic, conduction, or transcortical sensory aphasia, or those considered “nonapha-
sic” by the WAB-R. Nonfluent participants are those with Broca’s, global, or transcortical motor aphasia. Forty-six out of 332 total sessions 
had unavailable WAB-R results and were excluded just from analyses involving WAB-R scores. “Accuracy of exact match” refers to the top 
model prediction of target word matching the human-identified target word. “Accuracy within 5” refers to the human-identified target word 
being one of the Top 5 model predictions. WAB-R AQ = Western Aphasia Battery–Revised Aphasia Quotient (Kertesz, 2012). 
accuracy). Similarly, we saw higher performance on the 
participants with fluent aphasia (52.5% accuracy) than the 
participants with nonfluent aphasia (45.0% accuracy). 
Overall, the highest accuracy out of all test sets was on the 
paraphasias with high human confidence in target determi-
nation. For each of these four comparisons, the two test set 
stratifications (e.g., perfect human agreement vs. imperfect 
human agreement) obtained significantly different perfor-
mance levels according to the two-sided z test for indepen-
dent proportions (see Supplemental Material S2). p values 
were all < .001 except for the fluent versus nonfluent strati-
fication, which had p = .005. The same directions of perfor-
mance difference were seen for the accuracy within the Top 
5 predictions of these comparisons. The highest within-five 
accuracy out of all test set stratifications was also seen for 
the above median human confidence paraphasias, which 
Figure 2. Accuracy within the Top 1–20 predicted targets for Experiments

Sa
Experiment 4 got correct 80.7% of the time within the Top 
5 model predictions. 

Finally, accuracy results from Experiments 5 and 6 
are shown in Table 8. Experiment 5, the baseline model 
evaluated on control data, achieved 48.2% exact match 
accuracy and 59.2% accuracy within the Top 5 predic-
tions. Experiment 6, the model trained and evaluated on 
control data, achieved 58.0% exact match accuracy and 
80.0% accuracy within the Top 5 predictions. 
Discussion 

In this study, we trained an LLM to automatically 
predict the intended targets for paraphasias in discourse
 1–4. Exp = Experiment; PWA = people with aphasia. 
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Table 8. Experiments 6 and 7: baseline, tested on controls, and controls, tested on controls. 

Experiment name Test data Accuracy within 5 
Number of 

“paraphasias” 
Accuracy of exact 

match

Baseline, tested on controls Control testing data 2,415 0.482 0.592 

Controls, tested on controls Control testing data 2,415 0.580 0.800 

Note. “Accuracy of exact match” refers to the top model prediction of target word matching the human-identified target word. “Accuracy 
within 5” refers to the human-identified target word being one of the Top 5 model predictions. 
during the Cinderella story retelling task. We tried various 
training data configurations, and our two best performing 
experiments were fine-tuned using PWA data, with or 
without control data, and achieved exact match accuracy 
of 49.7% and 50.7%, respectively, and accuracy within 
Top 5 predictions between 68% and 70%. Considering just 
one of these (Experiment 4, fine-tuned on PWA and con-
trol data), the model performed better on paraphasias that 
had targets that were easier for humans to identify. It also 
performed better on paraphasias from participants with 
less severe aphasia and fluent aphasia. Overall, this work 
produced a relatively high-performing model for automati-
cally determining paraphasia targets in connected speech, 
while just using the surrounding context. 

Our baseline model achieved an overall exact match 
accuracy of 25.5%. This model, which was not fine-tuned 
to our data at all, was able to use its general-purpose rec-
ognition of language patterns to make some correct pre-
dictions, without having been exposed to the specific 
vocabulary and structure of the Cinderella story retellings. 
It is likely that the original corpus of text used in pretrain-
ing the LLM would have included examples of various 
forms of the Cinderella story, but to a much lesser degree 
than had it been fine-tuned to it. The model used in 
Experiment 2, fine-tuned using data from control group 
participants with the addition of synthesized paraphasias, 
improved by almost 10 points beyond the baseline model 
with 35.0% exact match accuracy. In this experiment, the 
pretrained LLM was specifically exposed to the vocabu-
lary and structure of the Cinderella story, as well as the 
general task of filling in words in it, but it was not 
exposed to any real-world examples of paraphasias. In 
contrast, Experiment 3, fine-tuned on just PWA data, saw 
a 24-point increase in exact match accuracy over the base-
line model. Thus, training the model for this task required 
exposing not just the pretrained model to the vocabulary 
of the Cinderella story but also, specifically, examples of 
real-world paraphasias that occur in that task. Somewhat 
surprisingly, the model using both PWA data and control 
data (Experiment 4) did not improve significantly beyond 
the model fine-tuned with just PWA data (Experiment 3). 
This likely indicates that the PWA data gave enough of 
that vocabulary knowledge to the LLM, and the control 
data did not provide any further information or reduce 
overfitting. However, more work could be done to 
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synthesize paraphasias in the control data to make them 
more similar to real-world paraphasias. As described in 
the Control Data Augmentation subsection, we attempted 
to make them more “realistic” by only making content 
word paraphasias, but there are other possibilities that 
could be explored in future work: adding synthetic retra-
cings, for example, as well as utilizing psycholinguistic 
variables (e.g., length in phonemes, frequency of occur-
rence, imageability) to produce more realistic synthetic 
training data. 

When evaluating Experiments 5 and 6, we found 
that performance on the synthetic paraphasias from con-
trols was higher than performance on real paraphasias 
from PWA. Experiment 5, the baseline model evaluated 
on control data, achieved 48.2% exact match accuracy, 
22.7 points above the baseline performance on PWA testing 
data. Similarly, Experiment 6, the model trained and evalu-
ated on control data, achieved 58.0% exact match accuracy, 
23 points above Experiment 2’s (trained on controls) per-
formance on PWA testing data. This higher performance 
is, in some sense, reassuring since it indicates that Experi-
ments 1–4 are not, for example, solely using the occurrence 
of repeated paraphasias surrounding the paraphasia in 
question to make predictions (discussed in more detail 
below). However, the fact that performance is still far 
below 100% indicates that this task is difficult even on 
fluent speech where the targets are known, further reiter-
ating the difficulty of this task on discourse from PWA. 

We found that human certainty about paraphasia 
targets was associated with model performance. Specifi-
cally, our best performing model (Experiment 4) per-
formed significantly better on paraphasias with targets 
that humans were more confident on or had perfect agree-
ment on. This association is reassuring and acts as a simple 
validity check, since it indicates that our trained models 
had an easier time with the more obvious targets. There is 
inherent ambiguity in determining targets for paraphasias 
in discourse. Half of the paraphasias had percent agreement 
below 100%, and in fact, average percent agreement on tar-
get identification was 76.8%. Moreover, this percentage 
agreement is only on the paraphasias for which we were 
able to resolve a target and excludes targets where ground 
truth could not be determined. Considering 76.8% agree-
ment as a stand-in for the obtainable human accuracy on
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this task, obtaining 50.7% accuracy on paraphasias with 
known targets appears high, particularly since the LLM 
was designed to rely exclusively on the surrounding lan-
guage for its predictions, while human raters had access to 
audiovisual recordings and transcripts and thus were able 
predict targets utilizing additional sources of information 
such as phonological similarity and gestures. One future 
direction of this line of research would be to give human
raters the same exact sentence cloze task as the model 
(e.g., by asking undergraduate research participants to 
provide the Top 5 most likely words to fill in the blank). 
This would allow for a more direct comparison with what 
the model is actually being asked to do and would also 
further assess how consistent and reliable human raters 
are at identifying likely targets with and without the para-
phasia information. Moreover, since human rater agree-
ment on target identification was only 76.8% on average, 
providing the Top 5 possible targets could be a more real-
istic task. Additionally, we intend to involve more human 
raters in the ground truth procedure to improve our 
generalizability. 

We also found that, as expected, Experiment 4 saw 
significantly different performance between participants 
with above median severity and below median severity, 
according to the WAB-R AQ, with exact match accuracy 
9.3% higher on participants with less severe aphasia. The 
exact reason for this difference in performance, whether it 
be factors such as increased occurrence of abandoned 
phrasings or multiple paraphasias from more severe partici-
pants, could be examined further. Relatedly, Experiment 4 
performed significantly better on fluent participants than 
nonfluent participants. Our fluent (Wernicke’s, anomic, 
conduction, or transcortical sensory aphasia or “nonapha-
sic” by WAB-R) and nonfluent (Broca’s, global, or trans-
cortical motor aphasia) stratifications acted as a proxy for 
capturing paragrammatic and agrammatic aphasia types, 
respectively. The nonfluent (and perhaps agrammatic) par-
ticipants may have harder-to-identify targets because of a 
lack of content words and context for the LLM to rely on. 
However, we recognize limitations with this approach. We 
had substantially fewer training examples from nonfluent 
participants (449 paraphasias) than fluent participants 
(1,666 paraphasias), which may have impacted that perfor-
mance difference. Additionally, classification based on the 
WAB-R is not perfect as there is both a classification error 
and considerable heterogeneity within groups. Finally, the 
mapping between fluency types and type of grammatical def-
icits is not perfect. Nonetheless, these stratifications of the 
test set provided some clues on what features impact perfor-
mance and where the models can improve. It is also possible 
that, particularly with more training data, separate models 
trained for use on specific types of aphasia could see higher 
performance and better clinical utility. 
Sa
After our quantitative analyses, we conducted an 
informal review of Experiment 4’s output, observing some 
of the more apparent patterns. Some errors were rather 
unsurprising, like swapping similar verbs (e.g., “sweeping” 
for “cleaning”). Where larger patterns stood out, though, 
they tended to point to a few peculiarities of the data set. 

For example, about 26% of the samples in our data 
set involved paraphasias that AphasiaBank had annotated 
as part of a “retracing” event. Retracing is when a 
speaker abandons a segment of speech and then retries 
that segment again (e.g., “Cinderella <put on> [//] tried 
on the slipper”). When a target word was involved in a 
retracing event, our LLM’s Top 5 accuracy for target pre-
diction increased to 81% (vs. 65% when it was not). Since 
we fill in all the paraphasia targets except the current tar-
get (see Model Training and Experiments), any other 
paraphasias in the immediate context would have been 
filled in with the correct target word, which provides an 
advantage for the task at hand. However, this can also 
work against the model when a target was not actually a 
part of a retracing event. Informally, we observed that the 
model sometimes incorrectly chose a word from the imme-
diate context, predicting a retracing where there was none. 
Regardless of whether this structure helps or hurts the pre-
diction, in future work, we plan to design an LLM that 
can accept phonemic transcription in its input (discussed 
in more detail below), which would further allow us to 
not replace the other paraphasias with their targets and 
instead leave them as their phonemic transcriptions. 

Another peculiarity of our data set was the storytell-
ing task itself, marked by a Cinderella-centric distribution 
of target words. Out of the 523 unique target words, 
about 29% of targets were one of five salient words from 
the fairy tale (“Cinderella,” “prince,” “slipper,” “ball,” or 
“godmother”). For the most common word, “Cinderella” 
(265 examples, 10% of the total), the LLM was correct 
182 times (69%) within the first guess and 217 times 
(82%) within five guesses. However, this advantage was 
largely canceled out when the correct target was not the 
protagonist’s name: The model incorrectly predicted 
“Cinderella” 125 times as a first guess and 439 times as a 
Top 5 guess. 

These two patterns—predicting targets that were 
repeats from the surrounding context, frequently predicting 
common words from the task—are consequences of fine-
tuning a model. There is a trade-off between the desirable 
outcome of improving performance by following common 
patterns in the training data and the loss in performance 
when new data points break that pattern; this is known as 
the bias–variance trade-off and is well documented in 
machine learning literature (Belkin et al., 2019; Geman 
et al., 1992). We employed techniques to reduce overfitting
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to the training data (data augmentation, cross-validation, 
early stopping), but more strategies could be explored. 

Given the architecture of our LLM, we suspect var-
ious utterance-related measures would also influence tar-
get prediction accuracy for a given speaker and/or utter-
ance. For example, we would predict that speakers with
longer utterances, that is, mean length of utterance in 
words, would be supplying the model with more linguis-
tic information and therefore increase the likelihood of 
target prediction success. Another set of hypotheses 
relates to the quality of the speaker’s utterances in terms 
of completeness, percentage of utterances that are com-
plete sentences; correctness, percentage of syntactically 
and/or semantically correct sentences; complexity, num-
ber of embedded clauses per sentence, sentence complex-
ity ratio (Thompson et al., 1995), and verbs per utter-
ance; as well as lexical diversity measures (Malvern 
et al., 2004). As mentioned previously, these factors may 
further explain why performance was affected by fluency 
and aphasia severity. All of the aforementioned speaker 
outcome measures can be automatically calculated using 
CLAN software (MacWhinney, 2000), and we posit all of 
them would be positive predictors of target prediction accu-
racy. To deepen our understanding and interpretation of 
our results, therefore, a future direction of this work is to 
employ a generalized linear mixed-effects model to test 
these hypotheses and quantify the magnitude of any signifi-
cant predictors. 

Having established a performance baseline, there are 
many other future directions of this work to shape it into 
a practical tool. As discussed above, there were differences 
in the information provided to human raters and our 
experiments, as the human raters saw the actual error pro-
duced and used this information to help determine the 
intended target, while this information was masked for the 
model. One possibility, which we are currently exploring, 
is to allow the machine to consider the phonemic repre-
sentation of the paraphasia itself; in many cases, the 
details of the paraphasia itself would provide useful infor-
mation for determining the target. We were not able to 
immediately try this approach, since LLMs are typically 
designed for orthographic transcriptions, and thus would 
not be able to recognize non–real-word paraphasias that 
are transcribed using the International Phonetic Alphabet. 
A theoretical exception is the recently released Canine 
LLM (Clark et al., 2022) that models at the character 
level rather than the word or subword level, but its pre-
training remains overwhelmingly orthographic in nature. 
In future work, we plan to develop a model that can 
accept mixed orthographic and phonemic input, in order 
to use both the semantic context surrounding the parapha-
sia as well as the phonemes of the paraphasia itself to fur-
ther improve predictive utility. 
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Considering the difficulty of the task at hand, our 
performance using just the surrounding language is sur-
prisingly high. However, as mentioned, the Cinderella 
retelling task is a highly constrained activity, with a much 
smaller expected target vocabulary than in standard 
speech. In the context of test and scale development for 
clinical assessment, when batteries typically include one or 
two specific stories, gains due to the constrained nature of 
the stimuli are advantageous. However, in the future, it 
could be beneficial to train models for less constrained 
tasks or more naturalistic speech. Additionally, these find-
ings open up possibilities for novel applications that 
extend beyond assessment, such as augmentative and 
alternative communication systems. Finally, as previously 
mentioned, we intend to eventually extend ParAlg, our 
automated system for classifying paraphasias, to use it on 
discourse. This work generates a preliminary model for 
the first step in that process: automatically identifying the 
most likely targets for paraphasias in discourse. 
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Appendix 

Details of Masking and Decoding 

To encode our inputs and outputs into a discrete numerical form recognizable to our specific choice of LLM, the text is 
encoded as subword units called SentencePieces (Kudo & Richardson, 2018). For example, the word “slipper” is repre-
sented by two tokens: “sl” and “ipper.” The SentencePieces algorithm identifies token boundaries using an unsupervised 
statistical algorithm, and its outputs reflect patterns of corpus frequency rather than morphology or any other linguistic prin-
ciple (though, in practice, on English text there is often some incidental overlap with morphology). For most purposes, these 
SentencePieces and their contents are an implementation detail, encoded and decoded automatically by tools included with 
the language modeling software. However, the detail is relevant to two of our methodological choices. First, due to input 
and output constraints imposed by the architecture of the baseline model, each target word was masked with as many 
[MASK] tokens as corresponded to its SentencePiece-encoded length. Relatedly, upon decoding our model’s target word 
predictions, the model produced as many SentencePieces as there were [MASK] tokens in the input sequence. In other 
words, for our present experimental setup, the model could not produce a prediction with too many or too few Sentence-
Pieces. Second, for outputs requiring more than one SentencePiece, we decoded the output using a standard technique 
known as “beam search” (Lowerre, 1976). Given that the number of possible SentencePiece permutations grows exponen-
tially with each additional [MASK] token, a beam search allows us to efficiently identify possible combinations of Sentence-
Pieces by estimating conditional probabilities for only the n most likely tokens at each step in the sequence. We used a limit 
(“beam width”) of  n = 20 while decoding our model’s output. Rarely, this method produced SentencePieces that combined 
to a non–real word such as “Cinderellaipper.” This occurred for 1.8%–3.9% of initial top predictions across Experiments 
1–4. Thus, when calculating accuracy, we filtered out the non–real word predictions from the model using our previous 
methods for determining lexicality using the word-frequency data set SUBTLEXus (Brysbaert & New, 2009) with a fre-
quency cutoff threshold of 11 (Fergadiotis et al., 2016).
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