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A B S T R A C T

Purpose: ParAlg (Paraphasia Algorithms) is a software that automatically cate-
gorizes a person with aphasia’s naming error (paraphasia) in relation to its
intended target on a picture-naming test. These classifications (based on lexi-
cality as well as semantic, phonological, and morphological similarity to the tar-
get) are important for characterizing an individual’s word-finding deficits or
anomia. In this study, we applied a modern language model called BERT (Bidi-
rectional Encoder Representations from Transformers) as a semantic classifier
and evaluated its performance against ParAlg’s original word2vec model.
Method: We used a set of 11,999 paraphasias produced during the Philadelphia
Naming Test. We trained ParAlg with word2vec or BERT and compared their per-
formance to humans. Finally, we evaluated BERT’s performance in terms of
word-sense selection and conducted an item-level discrepancy analysis to iden-
tify which aspects of semantic similarity are most challenging to classify.
Results: Compared with word2vec, BERT qualitatively reduced word-sense
issues and quantitatively reduced semantic classification errors by almost half.
A large percentage of errors were attributable to semantic ambiguity. Of the
possible semantic similarity subtypes, responses that were associated with or
category coordinates of the intended target were most likely to be misclassified
by both models and humans alike.
Conclusions: BERT outperforms word2vec as a semantic classifier, partially
due to its superior handling of polysemy. This work is an important step for fur-
ther establishing ParAlg as an accurate assessment tool.
Anomia, or word-finding difficulty, is a hallmark
feature of aphasia, a language disorder primarily resulting
from stroke (Goodglass & Wingfield, 1997). Anomia is
typically assessed with picture-naming tests, which are
used by researchers and clinicians alike to characterize
deficit profiles, develop treatment plans, and monitor out-
comes over time. The Philadelphia Naming Test (PNT;
Roach et al., 1996) is a 175-item picture-naming test that
offers a classification system for word production errors
(paraphasias) based on well-supported models of spoken
word production (e.g., Dell, 1986; Levelt et al., 1999). The
system defines six major categories of paraphasias (formal,
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unrelated, mixed, semantic, abstruse neologism, and pho-
nologically related neologism) that require examiners to
make judgments along four linguistic dimensions: lexical-
ity, phonological similarity, morphological similarity, and
semantic similarity to the intended target word. The types
of errors produced are understood to reflect strengths and
weaknesses in core subcomponent language processes (i.e.,
lexical-semantic access, phonological encoding) as well as
the degree of overall naming impairment (Dell et al., 1997;
M. F. Schwartz & Brecher, 2000) and, as such, provide
fine-grained, diagnostically valuable information about the
nature of anomia.

Of the four dimensions that underly the PNT’s clas-
sification scheme, judgments of semantic similarity are
inherently the most challenging due to their subjective
nature. For example, certain target–response pairs fall
somewhere in the liminal space between semantically
ary 2023 • Copyright © 2022 American Speech-Language-Hearing Association
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related and unrelated (e.g., the response “pipe” for the tar-
get word “house”), making them particularly challenging
to classify and consequently increasing the degree of mea-
surement error in the PNT or other assessment tools reli-
ant on these types of judgments.

Due to its ambiguity, the construct of semantic simi-
larity has been criticized. Medin et al. (1993) reviewed
criticisms of similarity, giving the example that “[I]f Mary
says that John is similar to Bill, one may have no idea
what she means until she adds the observation that they
are both avid chess players.” That is, a person’s life expe-
rience and frame of reference affect whether two concepts
are similar. Likewise, word-level semantic similarity is not
a fixed entity; often, a frame of reference is needed.
Chronis and Erk (2020) give the example that the anto-
nyms “black–white” are judged to be maximally dissimilar
in isolation but more similar when presented alongside
“black–red.” In children, variability in semantic judgments
can also be influenced by cognitive development, theoreti-
cally due to differences in the amount of acquired relational
knowledge and maturation of executive functions such as
working memory and inhibition control (Lu et al., 2022).
Further evidence on the subjective nature of semantic judg-
ments also comes from large corpus studies of human-
generated semantic judgments. For example, SimLex-999
(Hill et al., 2015) is a corpus of word pairs, where semantic
similarity was rated on a 7-point scale by 500 Mechanical
Turk workers. Even with adjusting the scores of 32 raters
who were biased in one direction or the other, the reported
interrater Spearman correlation between scores was ρ =
.67. This correlation was favorable in comparison with
other similarity corpora but still indicated the human vari-
ability of semantic similarity determination.

Machine learning approaches offer a probabilistic
and efficient alternative to human judgments of semantic
relationships. One such machine learning approach is the
use of a vector space language model, which assigns words
in a vocabulary to a point in a high-dimensional metric
space in order to facilitate its processing by computers.
Many of these models are inspired by a concept from dis-
tributional semantics known as the “distributional hypothe-
sis”: A word’s meaning may be characterized by “the com-
pany that it keeps” (Firth, 1957; Harris, 1954), that is, by
the words that co-occur in context with the word in ques-
tion. In language models based on this hypothesis, words
that are used in similar contexts will be geometrically
“closer together” in the vector space; as a result, words that
are closer together in the vector space will presumably be
more semantically similar than more distant pairs of words.

Our team has developed a software tool called
ParAlg (Paraphasia Algorithms) for automatically classify-
ing paraphasias from the PNT using machine learning
methods (Casilio et al., in press; Fergadiotis et al., 2016;
McKinney-Bock & Bedrick, 2019). The PNT is labor
intensive to score, and thus, the motivation of ParAlg is
to automate that process in order to increase its clinical
utility. The original ParAlg software used a language
model called word2vec (Mikolov, Sutskever, et al., 2013)
to determine the semantic similarity between a partici-
pant’s response and the intended target word.

Although word2vec can accurately represent some
semantic (e.g., city/state) and syntactic (e.g., past/present
tense) relationships between pairs of words (Mikolov,
Chen, et al., 2013), it has its limitations. Notably, word
representations in word2vec are static; there is only one
vector for the word “seal” despite its multiple meanings.
This inflexibility on the part of word2vec likely contrib-
utes, at least in part, to instances of semantic misclassifica-
tion in the context of a clinical tool like ParAlg. For
example, Casilio et al. (in press) analyzed the paraphasia
classification performance of ParAlg (with word2vec)
using two different configurations of transcription input.
For their best-performing configuration, further qualita-
tive analyses of human versus algorithm paraphasia mis-
classifications revealed that the two primary sources of
disagreement were over- and under-assignment of seman-
tic similarity. Target–response pairs whose semantic simi-
larity was due to an associative relationship or a category
coordinate relationship most often contributed to misclas-
sifications as compared with other semantic relationship
subtypes outlined by the PNT (i.e., superordinate, subordi-
nate, synonym, or diminutive). These results indicate that
ParAlg would further benefit from a new and improved
semantic classifier, particularly one that can better handle
associative and categorical relationships.

Some recent language models produce contextual
representations: The vector for a word changes depending
on the linguistic context in which the word occurs. For
example, “cup” in a sentence on baking will have a differ-
ent vector than “cup” in a sentence on football. One such
modern language model is BERT (Bidirectional Encoder
Representations from Transformers; Devlin et al., 2019),
which has proven successful in Google search, text sum-
marization, question answering, and a variety of other tasks
(Devlin et al., 2019; Liu & Lapata, 2019; B. Schwartz,
2020). One reason for its wide applicability is that it is
designed to be fine-tuned for a specific task: A classifier is
trained on top of BERT in such a way that the produced
word vectors are tuned for the task at hand. For example,
BERT can be fine-tuned to detect spam e-mails or classify
whether a movie review was positive. Here, we fine-tune it
to determine semantic similarity, which is outlined in more
detail below. Like word2vec, BERT also has been shown
to represent semantic relationships. For example, when
fine-tuned for the semantic textual similarity benchmark
(Cer et al., 2017), a collection of sentence pairs with
human-annotated similarity judgments on a 5-point scale,
BERT obtained a Spearman rank correlation of ρ = .865
Salem et al.: Refining Semantic Similarity of Paraphasias 207



Table 1. Moss Aphasia Psycholinguistics Project Database code
distributions and descriptions.

Code Count Description

Formal 2,471 (20.593%) Real word, phonologically
similar, not semantically
similar

Unrelated 49 (7.076%) Real word, not phonologically
similar, not semantically
similar

Semantic 2,031 (16.296%) Real word, not phonologically
similar, semantically similar

Mixed 1,198 (9.984%) Real word, phonologically
similar, semantically similar

P.R. neologism 4,450 (37.086%) Nonword, phonologically
similar

A. neologism 1,000 (8.334%) Nonword, not phonologically
similar

Note. P.R. neologism = phonologically related neologism; A.
neologism = abstruse neologism.
with human-annotated scores, which became the new state-
of-the-art score. Importantly, Reif et al. (2019) tested
BERT’s ability to disambiguate word sense and found that
it was able to correctly categorize a word’s sense in a sen-
tence with a 0.711 F1 score (a common metric of perfor-
mance agreement in machine learning on a 0–1 scale),
which was higher than the previous state-of-the-art score.
Thus, BERT shows promise as a modern alternative to
word2vec for use in automatic semantic similarity
determination.

The purpose of this study was to compare the per-
formance of BERT and word2vec within the context of
ParAlg and PNT paraphasia classification. Specifically,
we evaluated binary semantic judgments and downstream
paraphasia classification on a variety of metrics to deter-
mine which semantic model performed better and to what
degree. We hypothesized that updating ParAlg from its
pretrained language model word2vec to the contextual
and fine-tuned language model BERT would result in
fewer semantic classification errors. For this change to be
successful, we wanted to see not only an improvement in
the accuracy of the system but also a qualitative improve-
ment in the types of errors the system makes. These aims
can be summarized in three main research questions: (a)
Does BERT improve the automatic semantic similarity
classification of paraphasias? (b) Can we attribute the
improvement partially to better word-sense disambigua-
tion? (c) How many of ParAlg’s semantic similarity mis-
classifications can be attributable to inconsistency in
human judgment rather than language model error, and
what subtypes of semantic similarity are most difficult for
both humans and the two language models?

Method

Data

Our data set is a subset of the Moss Aphasia Psy-
cholinguistics Project Database (MAPPD; Mirman et al.,
2010), which consists of 11,999 single-word paraphasias
produced by 296 participants with aphasia. On average,
sample participants were 58.8 years old (SD = 13), were
29.9 months postonset (SD = 46.8), and had a range of
severity but were overall skewed toward the higher end of
the Western Aphasia Battery–Aphasia Quotient (M =
73.3, SD = 17.8, range: 25.2–99.3). Paraphasias were pho-
nemically transcribed in the International Phonetic Alpha-
bet (IPA) and assigned a paraphasia classification by
MAPPD human annotators according to the PNT guide-
lines. Orthographic transcriptions were added to real-word
paraphasias, and only the six most common paraphasia
classification types (formal, unrelated, mixed, semantic,
abstruse neologism, and phonologically related neologism)
were included in our data set. Formal, semantic, mixed,
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and unrelated are all real-word errors that are phonologic-
ally similar, semantically similar, both, or neither, respec-
tively, in relation to the target word. The two neologism
categories account for nonword paraphasias; phonologic-
ally related neologisms are phonologically related to the
target word, and abstruse neologisms are not. Due to their
lack of lexicality, nonwords or neologisms are not judged
or further classified along the semantic dimension. The
distributions of each of these six categories and their
descriptions are summarized in Table 1.

A representation of the MAPPD data set that we
feed into ParAlg is shown in Figure 1. Target is the
intended target word for a given paraphasia. Response
(orthographic) is the lexical form of the paraphasia (if it
is a real word), and response (phonemic) is the transcribed
paraphasia in IPA. Code is the MAPPD human-annotator
classification, which we use as the ground truth in training
our models.

ParAlg

The ParAlg software used for these experiments
includes four separate classifiers—lexicality, phonolo-
gical similarity, morphological similarity, and semantic
similarity—plus a decision tree for determining which of
the six major PNT categories a paraphasia belongs to. The
lexicality of a paraphasia (whether or not it was a real
word) was determined by whether or not an orthographic
transcription existed, followed up by confirming that the
word was used frequently enough in a corpus of word
usage (SUBTLEX; Brysbaert & New, 2009) to be consid-
ered lexical (and not an accidental but archaic real word).
Phonological similarity was determined by checking a finite
set of rules from the PNT, and morphological similarity
06–220 • January 2023



Figure 1. Moss Aphasia Psycholinguistics Project Database data set.
was determined using a corpus of morphology (CELEX;
Baayen et al., 1995) and a finite set of rules from the PNT.
Finally, semantic similarity was determined with either
word2vec or BERT, described in more detail below. More
Figure 2. ParAlg (Paraphasia Algorithms) decision tree. LEX = lexicalit
MORPHO = morphological similarity; P.R. Neologism = phonologically re
details on the lexical, phonological, and morphological clas-
sifiers can be found in our previous work (Casilio et al., in
press; Fergadiotis et al., 2016; McKinney-Bock & Bedrick,
2019).

The ParAlg decision tree, which uses these features,
is illustrated in Figure 2. The example provided is the
response “cup” for the target word “glass.” Following the
decision tree down, we see that “cup” is a real word; it is
semantically similar to “glass,” but it is not phonologically
similar to “glass,” making it a semantic paraphasia.

Language Models

In ParAlg, the semantic similarity of a response to
the target is determined with a binary classifier that uses a
language model. As mentioned previously, our original
y; SEM = semantic similarity; PHONO = phonological similarity;
lated neologism.
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semantic model was a word2vec (Mikolov, Sutskever,
et al., 2013) model, closely based on a previously reported
version of ParAlg (McKinney-Bock & Bedrick, 2019).
Word2vec provides a way of encoding words into numeric
vectors to represent their meanings. To build our model, a
vector is initialized for each word in the vocabulary and
arranged as a matrix of weights for a (very shallow) deep
neural network (DNN). The DNN is trained on a large cor-
pus of data composed of a massive amount of text data—in
our case, the New York Times subset of the Gigaword cor-
pus (Graff & Cieri, 2003) combined with transcripts from
the long-running public radio show This American Life. We
removed from the text a set of about 180 stop words (i.e.,
words with minimal semantic content, such as determiners
and pronouns), and affixes were removed from words in a
process called “stemming.” The model was trained using
the continuous bag of words (CBOW) algorithm. In
CBOW, each training sample consists of a target word and
a window of N surrounding words. Given the surrounding
words, the DNN is trained to predict the target word. Once
the DNN has been trained on the entirety of the training
data, the weights of the input layer are retained as vector
representations for each word in the vocabulary, known as
“word embeddings.” This article replicated exactly the pro-
cess described in our previous work (McKinney-Bock &
Bedrick, 2019) with one exception: We removed the word
“can” from the list of stop words because it is also one of
the target words in the PNT. This changed the prediction
for only two samples, one positive and one negative, having
no effect on metrics. The model was trained with the best
configuration from the previous article, with a window size
of 1, a vector dimensionality of 750, and a word frequency
threshold of 250.

The language model BERT (Devlin et al., 2019) is
also a DNN but is designed and trained quite differently
from word2vec. BERT is pretrained on a large data set
consisting of the BookCorpus (Zhu et al., 2015) and the
text from English Wikipedia in a two-step process. First,
it trained using “masked language modeling.” Here,
BERT is given sentences from the corpus where 15% of
the tokens are masked (i.e., removed and replaced with a
special token [MASK]), and the model attempts to predict
what those masked words were. By doing this on the
whole corpus of sentences, BERT learns what words co-
occur in what contexts. Next, it is pretrained further
through “next-sentence prediction.” In this process, the
model is given two sentences, Sentence A and Sentence B.
These two sentences are either a pair of sequential sen-
tences or two randomly chosen sentences from the corpus.
The model attempts to predict whether a given Sentence B
followed Sentence A in the corpus. This allows it to capture
information about sentence relationships, which the masked
language modeling task does not. BERT can be used in the
way it was released, as a pretrained model, but one major
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advantage of it is that it can also be fine-tuned for your
specific classification task. That is, a classifier can be
trained on top of it in such a way that the vectors BERT
produces and the classifier at the end are tuned to the task
at hand. In our case, the classifier we trained for fine-
tuning was designed to determine when PNT target–
response pairs were semantically similar or dissimilar.

The original BERT model was followed by a number
of variations that are more efficient to train, are smaller, or
have other advantages over the original model. One of
these variations is called DistilBERT, which was released
by Sanh et al. (2020). DistilBERT is a smaller and faster
version of the BERT base model. We chose DistilBERT
for this study because it reduces the number of parameters
(from 66 million to 110 million) with minimal loss in per-
formance, making it faster and reducing the likelihood of
overfitting. It is also important to note that training “from
scratch” versions of either BERT or DistilBERT is gener-
ally impractical due to the large amount of data and com-
putation time required. As such, we followed standard
practices in the field by beginning with a publicly available
base model (Sanh et al., 2020), accessible through the open-
source HuggingFace library (Wolf et al., 2020), that had
been pretrained following the above methods and then fine-
tuning from there on the PNT semantic similarity classifica-
tion task as described. Note that we refer to the model in
our experiments as “BERT” for simplicity.

Experiments

We trained ParAlg to classify paraphasias in the
MAPPD using either word2vec or BERT for the semantic
similarity classification and held all other model features
fixed. In these two experiments, we used five-fold cross-
validation in order to prevent overfitting. That is, we
divided the 11,999 MAPPD items into five groups and
trained five separate models for each experiment, in which
each one group was held out as testing data. This was
done in such a way that, for each of the five iterations, a
participant’s responses were only in either training data
or testing data to prevent the models from learning
participant-specific information. The same five-fold splits
were used for word2vec and BERT experiments.

For the word2vec experiment, word2vec was pre-
trained as described in the Language Models section.
Once it was trained, vectors for each of the MAPPD real-
word responses and corresponding target were pulled out.
Cosine similarities were calculated (a measure capturing
angular distance) between the target and response vectors,
which produced a value between 0 and 1, with higher
values representing a higher degree of similarity between
the two words. To use this for the semantic similarity clas-
sification in ParAlg, a receiver operating characteristic
curve analysis (Hanley & McNeil, 1982) was used to
06–220 • January 2023



determine a threshold to use for the classifier based upon
the cosine similarity values of MAPPD target–response
pairs. For each of the five-fold data splits, we calculated
the best threshold for classifying the semantic similarity of
the training data. Once the optimal threshold for that
training data was chosen (e.g., 0.55), then for target–
response pairs in the test data, all cosine similarity values
above 0.55 would be classified as semantically similar, and
those below 0.55 would be classified as dissimilar.

In the BERT experiment, rather than training the
model ourselves from scratch and then training a separate
classifier, we used the openly available pretrained BERT
model and fine-tuned it on the semantic similarity classifi-
cation task from ParAlg, which produced a classifier for
the task. Basing our methods on the BERT approach used
by Gale et al. (2021), we gave BERT two sentences, where
Sentence A was the target word (e.g., “glass”) and Sen-
tence B was the response (e.g., “cup”) from the MAPPD.
Because this task had similarities to the next-sentence pre-
diction pretraining task described above, we theorized that
BERT would be able to learn the semantic similarity
Figure 3. Training and experiment overview. MAPPD = Moss Aphasia P
Representations from Transformers; ROC = receiver operating characteris
relationship between target and response. In each of the
five-fold data splits, once BERT was fine-tuned on train-
ing data, we then passed the target–response pairs in the
testing data through the model to produce a classification
result. A diagram summarizing the language model train-
ing and experiments is shown in Figure 3.

Evaluation

We evaluated the performance of our improved clas-
sifier in several ways. First, we compared classification
matrices of binary semantic determination as well as
downstream PNT code classification for the two configu-
rations (word2vec and BERT). Then, we calculated sev-
eral performance metrics on those matrices: positive pre-
dictive value, sensitivity, F1 (also known as F-measure),
and accuracy, each of which is based on counts of true
positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). These four metrics are defined
as follows (for the binary semantic similarity determina-
tion): Positive predictive value captured how often our
sycholinguistics Project Database; BERT = Bidirectional Encoder
tic.
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categorization as semantically similar was correct (TP/TP +
FP), sensitivity captured how often we caught pairs that
were truly semantically similar (TP/TP + FN), F1 cap-
tured the harmonic mean of positive predictive value and
sensitivity (TP/TP + 0.5(FP + FN)), and accuracy captured
how often our models correctly classified both the semanti-
cally similar and dissimilar categories (TP + TN/TP +
FP + TN + FN). We also calculated these same metrics
for each PNT category. Taken together, these measures
capture a wide picture of ParAlg’s performance and
allow us to weigh the BERT improvements to FP and
FN alone and across the different PNT categories.

We then conducted an exploratory qualitative analy-
sis of the geometry of word2vec and BERT vectors of
target–response pairs most likely to have word-sense
issues. We reduced the data to unique target–response
pairs and separated the word2vec and BERT errors into
FN and FP. We focused on the FN because we expected
that most errors related to polysemy would be instances
where a target–response pair was semantically similar, but
because the model picked up on the wrong meaning of the
target or response, it was incorrectly classified as dissimi-
lar. We defined a BERT improvement as an instance
where word2vec incorrectly classified a pair as dissimilar
but BERT corrected it to be similar. We counted these
BERT improvements for each of the 175 targets. Then,
for the three targets with the highest number of FN
improvements, for word2vec and BERT, respectively, we
performed t-Distributed Stochastic Neighbor Embedding
(t-SNE; van der Maaten & Hinton, 2008) dimensionality
reduction for each of the responses to the target and the
target itself to two dimensions and plotted them. t-SNE is
a commonly used nonlinear dimensionality reduction tech-
nique that works well for high-dimensional data by pre-
serving the local structure of data while revealing impor-
tant global structure (van der Maaten & Hinton, 2008).
Additionally, for each of those three targets, we also cal-
culated the 10 other vocabulary words closest to them in
word2vec and BERT space. That is, using the vocabulary
we trained word2vec with, we calculated cosine similarity
values between each of the 175 targets and all the words
in the vocabulary, first using word2vec vectors and then
using BERT vectors. Then, for each target, we filtered the
10 highest cosine similarity (so most similar) vocabulary
words for each model.

Finally, we conducted an item-level discrepancy
analysis of all cases, where BERT’s or word2vec’s seman-
tic classification yielded a response different from that of
human-annotated semantic judgments. Specifically, the
11,999-item data set was distilled to a subset of unique
target–response pairs, where one or both models incor-
rectly classified semantic similarity, via the same process
described by Casilio et al. (in press) and described in
detail in the Appendix. Then, three research assistants
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reviewed the unique pairs by (a) judging whether the pair
was semantically similar using the target and response
orthographic transcriptions exclusively and, (b) if similar,
identifying which of the one or more components of the
PNT’s semantic similarity criteria were met within a given
pair (i.e., identifying the semantic similarity subtype). For
example, the pair “apple–fruit” would be judged to be
semantically similar because the response “fruit” is the
superordinate of the target word “apple.” The semantic
similarity subtypes from the PNT scoring manual are the
following: (a) synonym; (b) category coordinate (target and
response share a category); (c) superordinate; (d) subordi-
nate; (e) associated; (f) diminutive; (g) semantically related
proper name; and (h) shared morpheme, defined as the
addition of a lemma to a monomorphemic target or the
addition/substitution of a lemma in a compound target.
An exhaustive list of the semantic similarity criteria is
freely available on the developer’s website (see https://
mrri.org/philadelphia-naming-test/).

In alignment with a similar discrepancy analysis
conducted by Casilio et al. (in press, rater judgments were
used in conjunction with the original MAPPD human-
annotator judgment, as well as a given algorithmic judg-
ment (either BERT or word2vec), to categorize discrepan-
cies as being attributable to human-annotated error or
algorithmic error. Specifically, discrepant target–response
pairs were categorized as MAPPD human-annotated
errors (called “Human”) if all three research assistants
and the algorithmic classification were in alignment with
regard to semantic similarity classification but the original
MAPPD human-annotated judgment was not. Pairs were
categorized as algorithmic errors (called “Algorithm”) if
the opposite occurred: All research assistants and the orig-
inal MAPPD human-annotated judgment agreed but the
algorithmic classification did not. Pairs where the three
research assistants failed to agree on semantic similarity
were categorized into a third category, namely, “Uncer-
tain.” For both Human and Algorithm errors, the reason
for the misclassification was further sorted into one of FP
(actually not semantically similar) or FN (actually seman-
tically similar). Then, the FN were sorted into subtypes
(associated, superordinate, etc., or subtype disagreement if
there was no consensus). These results were compared
across configurations (word2vec vs. BERT), origins of
error (Human error vs. Algorithm error vs. Uncertain),
and (when applicable) subtype frequencies.
Results

Aim 1: BERT Improvement Over Word2vec

The classification metrics of the word2vec and
BERT experiments are summarized in Table 5. The top
06–220 • January 2023
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Table 2. Binary semantic similarity classification tables for word2vec and BERT (Bidirectional Encoder Representations from Transformers).

MAPPD classification

word2vec prediction BERT prediction

Not similar Similar Not similar Similar

Not similar 8,170 600 8,506 264
Similar 428 2,801 298 2,931

Note. MAPPD = Moss Aphasia Psycholinguistics Project Database.
row in Table 5 shows the performance of the semantic
similarity binary classifier alone. Word2vec obtains a clas-
sification accuracy of 0.914, corresponding to 1,028
semantic similarity misclassifications. BERT obtains an
accuracy of 0.953, which corresponds to 562 semantic sim-
ilarity misclassifications. The binary semantic similarity
classification matrices for the two experiments are shown
in Table 2, where counts for correct predictions (TP and
TN) are found on the diagonal and incorrect predictions
(FP and FN) are found off the diagonal. BERT reduces
the number of FN from 428 to 298 (−130) and the num-
ber of FP from 600 to 264 (−336). This change is reflected
in an increase in sensitivity (+0.041) and a substantial
increase in positive predictive value (+0.093). Overall, the
BERT model had more equal weighting of FP and FN,
whereas the word2vec model was overly biased toward
saying pairs were similar when they were not.

We also see that, in the word2vec experiment, the
majority of downstream errors in paraphasia classification
into the six categories in ParAlg came from semantic simi-
larity misclassifications. In the word2vec classification
matrix (see Table 3), the largest off-diagonal number was
406 errors, where the pair was formal (just phonologically
similar) but ParAlg categorized it as mixed (phonologic-
ally similar and semantically similar). This was followed
by 258 errors, where the pair was semantic (just semanti-
cally similar) but ParAlg categorized it as unrelated (nei-
ther semantically nor phonologically similar). In contrast,
in the BERT configuration classification matrix in
Table 4, the largest number of downstream errors was
Table 3. Downstream ParAlg (Paraphasia Algorithms) classification matrix

MAPPD
classification

ParAlg wit

Formal Unrelated Mixed

Formal 1,952 61 406
Unrelated 45 638 10
Mixed 114 8 1,006
Semantic 19 258 210
A. neo 0 0 0
P.R. neo 0 0 0
All 2,130 965 1,632

Note. A. neo = abstruse neologism; P.R. neo = phonologically related neo
caused by phonological similarity mistakes. The largest
off-diagonal number was 205 errors, where pairs were
semantic (just semantically similar) but ParAlg categorized
them as mixed (semantically similar and phonologically
similar). However, this was followed by 157 pairs that
were formal (just phonologically similar) but ParAlg cate-
gorized as mixed (phonologically similar and semantically
similar), indicating that misclassifications at the semantic
level using BERT were still causing downstream errors in
paraphasia classification.

The performance metrics of the downstream PNT
category determination in the two configurations are also
shown in Table 5. The largest change in positive predictive
value out of the four lexical categories was seen in mixed,
which improved from 0.616 to 0.736 (+0.120). This makes
sense because word2vec was producing a disproportionate
number of FP and, thus, classified a number of parapha-
sias that were actually formal (just phonologically similar)
as mixed (phonologically similar and semantically similar)
instead. Likewise, the largest change in sensitivity was
seen in the formal category, which improved from 0.790
in word2vec to 0.891 in BERT (+0.101). This reflects the
reduction in FN when changing to BERT. That is, word2-
vec was categorizing more paraphasias as formal (just
phonologically similar), which, in actuality, were mixed
(phonologically similar and semantically similar). Simi-
larly, the largest change in accuracy was seen in the mixed
category with an increase of 0.023, followed by the formal
category with an increase of 0.022. The largest change in
F1 was actually in the unrelated category (neither
using word2vec.

h word2vec classification

Semantic A. neo P.R. neo All

30 0 22 2,471
154 2 0 849
61 2 7 1,198

1,524 15 5 2,031
0 914 86 1,000
0 92 4,358 4,450

1,769 1,025 4,478 11,999

logism; MAPPD = Moss Aphasia Psycholinguistics Project Database.
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Table 4. Downstream ParAlg (Paraphasia Algorithms) classification matrix using BERT (Bidirectional Encoder Representations from
Transformers).

MAPPD
classification

ParAlg with BERT classification

Formal Unrelated Mixed Semantic A. neo P.R. neo All

Formal 2,201 73 157 18 0 22 2,471
Unrelated 48 710 7 82 2 0 849
Mixed 90 5 1,030 64 2 7 1,198
Semantic 24 150 205 1,632 15 5 2,031
A. neo 0 0 0 0 914 86 1,000
P.R. neo 0 0 0 0 92 4,358 4,450
All 2,363 938 1,399 1,769 1,025 4,478 11,999

Note. A. neo = abstruse neologism; P.R. neo = phonologically related neologism; MAPPD = Moss Aphasia Psycholinguistics Project Database.
phonologically similar nor semantically similar), with an
increase from 0.703 to 0.795 (+0.092), primarily reflecting
BERT’s decrease in FP.

Aim 2: Word-Sense Disambiguation
Improvement

We counted how many times BERT corrected
word2vec FN for each of the 175 targets, out of all the
unique target–response pairs. The three targets for which
BERT made the most FN corrections were “seal” (12 cor-
rections), “can” (eight corrections), and “ruler” (seven cor-
rections). Each of these target words is polysemous:
“Can” can refer to an aluminum can (the intended target),
but it can also refer to the modal verb meaning “be able
to.” “Seal” can refer to the aquatic mammal (as intended),
but it can also refer to a letter embossing or closure.
“Ruler” can be the straight-edge object for measuring (as
intended), but it can also refer to someone who rules over
a country. The 12 FN corrections for “seal,” in no particu-
lar order, were “tiger,” “zebra,” “water,” “cow,” “snail,”
“sea,” “otter,” “animal,” “monkey,” “porcupine,” “owl,”
and “elephant.” The eight corrections for “can” were
“sauce,” “jar,” “potato,” “applesauce,” “potatoes,” “soup,”
“peas,” and “pineapple.” The seven corrections for “ruler”
Table 5. Performance metrics of binary semantic similarity determination
word2vec and BERT (Bidirectional Encoder Representations from Transfo

Paraphasia
classification

word2vec

Pos pred value Sens F1 A

Sem +/− 0.824 0.867 0.845 0.9
Formal 0.916 0.790 0.849 0.9
Unrelated 0.661 0.751 0.703 0.9
Mixed 0.616 0.840 0.711 0.9
Semantic 0.862 0.750 0.802 0.9
A. neo 0.892 0.914 0.903 0.9
P.R. neo 0.973 0.979 0.976 0.9

Note. Pos pred value = positive predictive value; Sens = sensitivity; Ac
A. neo = abstruse neologism; P.R. neo = phonologically related neologism
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were “measure,” “foot,” “scale,” “tape,” “centimeter,”
“school,” and “yardstick.”

To observe patterns in the geometry of word2vec
and BERT representations of these targets and responses,
we performed t-SNE dimensionality reduction of the vec-
tors of all the responses for “seal,” “can,” and “ruler” for
each configuration. These are shown in Figures 4, 5, and 6,
respectively. The FN corrections are responses that were
incorrectly classified as dissimilar by word2vec (identified
with green italic text with an asterisk in the figures) but
correctly classified as similar by BERT (identified with
green italic text without an asterisk in the figures).

Ten out of the 12 BERT FN corrections for “seal”
were responses that were an animal (“tiger,” “zebra,”
“otter,” etc.), and the remaining two were responses
“water” and “sea.” The t-SNE reduction of BERT
responses in Figure 4 shows a clear separated cluster of ani-
mal and water-related terms around “seal.” Word2vec also
clustered some animal terms, but the response “wheel,” for
example, was just as close to “seal” as “walrus.” In Figure
5 of “can,” we see little clustering for word2vec. In fact,
word2vec classified all responses besides “canned” as dis-
similar to “can,” as shown by all the dissimilar responses
being correct (no asterisk) and all the similar responses
being incorrect (asterisk). In contrast, the BERT reduction
and downstream ParAlg (Paraphasia Algorithms) classification for
rmers).

BERT

cc Pos pred value Sens F1 Acc

14 0.917 0.908 0.913 0.953
42 0.931 0.891 0.911 0.964
55 0.757 0.836 0.795 0.969
32 0.736 0.860 0.793 0.955
37 0.909 0.804 0.853 0.953
84 0.892 0.914 0.903 0.984
82 0.973 0.979 0.976 0.982

c = accuracy; Sem +/− = binary semantic similarity determination;
.
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Figure 4. t-Distributed Stochastic Neighbor Embedding (t-SNE) of
word2vec and BERT (Bidirectional Encoder Representations from
Transformers) responses to the target word “seal.” Responses color-
coded red are not semantically similar to the target. Responses
color-coded green and in italic typeface are semantically similar to
the target. The target word (“seal”) is color-coded blue and in all-
uppercase typeface. An asterisk (*) indicates that the model (word2-
vec or BERT) incorrectly classified that response, and lack of an
asterisk indicates that the model was correct. Sem Sim = semanti-
cally similar; TARG = target word.

Figure 5. t-Distributed Stochastic Neighbor Embedding (t-SNE) of
word2vec and BERT (Bidirectional Encoder Representations from
Transformers) responses to the target word “can.” Responses color-
coded red are not semantically similar to the target. Responses
color-coded green and in italic typeface are semantically similar to
the target. The target word (“can”) is color-coded blue and in all-
uppercase typeface. An asterisk (*) indicates that the model (word2-
vec or BERT) incorrectly classified that response, and lack of an
asterisk indicates that the model was correct. Sem Sim = semanti-
cally similar; TARG = target word.
shows two clear clusters of responses. The cluster around
the target word “can” consists mostly of food-related
responses and includes all the FN corrections BERT made.
Neither word2vec nor BERT had very clear clustering for
“ruler” in Figure 6; however, there was a little more clus-
tering of similar (green and italic) responses around “ruler”
for BERT, including the corrections BERT made such as
“tape,” “measure,” and “scale.”

Finally, we calculated the 10 most similar words
(out of the entire vocabulary used to train word2vec) to
each of these targets for both configurations. These most
similar words are listed in Table 6. In BERT space, the
top two words most similar to “seal” were ambiguous or
capturing the wrong meaning (“seals” and “seales”), but
the following three terms (“whale,” “dolphin,” and
“shark”) were similar to the “aquatic mammal” meaning.
For “can,” BERT’s most similar words all contained the
stem “can”—one of which (“canister”) was similar to the
intended meaning—whereas words such as “able” and
“didn’t” were closest in word2vec space. Words most simi-
lar to “ruler” were still capturing the wrong sense in both
word2vec and BERT space.

Aim 3: Comparison With Human Discrepancies

Of the 1,028 word2vec and 562 BERT semantic dis-
crepancies, 790 and 536, respectively, were unique target–
response pairs that were included in the discrepancy analy-
sis, results of which are summarized in Table 7. There
were 229 word2vec pairs and 176 BERT pairs categorized
as Uncertain, meaning that the research assistants dis-
agreed on whether they were similar pairs or not. In both
Salem et al.: Refining Semantic Similarity of Paraphasias 215



Figure 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) of
word2vec and BERT (Bidirectional Encoder Representations from
Transformers) responses to the target word “ruler.” Responses
color-coded red are not semantically similar to the target.
Responses color-coded green and in italic typeface are semanti-
cally similar to the target. The target word (“ruler”) is color-coded
blue and in all-uppercase typeface. An asterisk (*) indicates that
the model (word2vec or BERT) incorrectly classified that response,
and lack of an asterisk indicates that the model was correct. Sem
Sim = semantically similar; TARG = target word.

Table 6. Top 10 most similar words to the target words “seal,” “can,” an
tions from Transformers) space.

Rank

Seal

word2vec BERT word2vec

1 reseal seals ca
2 clinch seales could
3 airtight whale ‘ll
4 wrap dolphin able
5 unseal shark didn’t
6 weatherstrip sealant how/why
7 watertight sealys wo
8 cordon sealer darndest
9 padlock seali doesn’t
10 sealant sealy veeg
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experiments, a considerable chunk of errors was defini-
tively due to Human error (60 or 10.7% of word2vec
errors and 56 or 15.6% of BERT errors), where the
MAPPD human-annotated semantic similarity was differ-
ent from what the three research assistant raters and
ParAlg decided on. This left 501 and 304 Algorithm errors
for word2vec and BERT, respectively. There were more
FP than FN in both configurations, although it was clear
once again that BERT had a better balance of FP and FN
(67.1% of errors in word2vec vs. 53.0% of errors in BERT).
When further subtyping the FN, in the BERT configura-
tion, the largest subtype was subtype disagreement, where
the research assistants agreed that a pair was similar but
disagreed on the reason why (meaning these were more dif-
ficult pairs). This subtype was followed by associated and
then category coordinate. For word2vec, associated was
the most common subtype of the FN, followed by subtype
disagreement and then category coordinate. After that, the
remaining subtypes were sparsely represented.

Human-related errors (i.e., the original MAPPD
human-annotated judgment disagreed with ParAlg and
the three human raters; 60 word2vec errors and 56 BERT
errors) also demonstrated a similar ordering of subtypes
for FN, and it is notable that humans were more biased
toward FN than toward FP. Out of the FN, associated
was the most common subtype, followed by shared mor-
pheme and then category coordinate. No other classifica-
tion error categories were represented.
Discussion

We compared the performance of two language
models, namely, word2vec and BERT, to automatically
classify semantic similarity of responses to items in the
PNT. We found that BERT outperformed word2vec by
reducing the number of semantic similarity misclassifica-
tions by almost half. We explored whether BERT’s
improvement was related to better handling of polysemy
d “ruler” in word2vec and BERT (Bidirectional Encoder Representa-

Can Ruler

BERT word2vec BERT

‘can dictatorship tyrant
cana monarch emir
canister strongman dictator
cannas emperor rulers
canins despot throne
canapes tyrant governorship
caning autocrat rule
‘cans leader king
cani strongmen governors
cantate viceroy queen
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Table 7. Breakdown of the types of semantic similarity errors attributable to humans, word2vec, and BERT (Bidirectional Encoder Represen-
tations from Transformers) according to the Philadelphia Naming Test.

Category Category subtype word2vec BERT

Uncertain N/A 229 176

Human
n = 60

Algorithm
n = 501

Human
n = 56

Algorithm
n = 304

False positive No relationship 23 (0.383) 336 (0.671) 26 (0.464) 161 (0.530)
False negative Related proper name 0 (0.000) 2 (0.004) 0 (0.000) 3 (0.010)

Shared morpheme 5 (0.083) 3 (0.006) 3 (0.053) 7 (0.023)
Associated 17 (0.283) 65 (0.130) 12 (0.214) 39 (0.128)
Category coordinate 2 (0.033) 21 (0.042) 4 (0.071) 27 (0.089)
Diminutives 0 (0.000) 1 (0.002) 0 (0.000) 2 (0.007)
Subordinate 0 (0.000) 5 (0.010) 0 (0.000) 2 (0.007)
Superordinate 0 (0.000) 13 (0.026) 0 (0.000) 3 (0.010)
Synonym 0 (0.000) 2 (0.004) 0 (0.000) 1 (0.003)

Subtype disagreement 13 (0.217) 53 (0.106) 11 (0.196) 61 (0.200)

Note. Uncertain indicates three research assistants disagreed on the semantic similarity of pairs. These Uncertain pairs have N/A (not applica-
ble) category subtype. False positive represents cases where a model classified a pair as similar but the Moss Aphasia Psycholinguistics Pro-
ject Database (MAPPD) said it was dissimilar. False negative represents cases where a model classified a pair as dissimilar but the MAPPD said
it was similar. Human refers to cases where all three research assistants and ParAlg (Paraphasia Algorithms) agreed on semantic similarity but
the original MAPPD human annotator did not. Algorithm refers to cases where all three research assistants and the MAPPD agreed on similarity
but ParAlg did not. More information on the subtypes can be found at https://mrri.org/philadelphia-naming-test/.
by plotting vectors of responses to PNT targets, where BERT
made the most FN improvements over word2vec, and explor-
ing words closest to those targets in each space. We saw pat-
terns indicating that BERT corrected some word2vec issues
with word meaning. Finally, we conducted an item-level
review of word2vec and BERT errors. We found that many
word2vec and BERT errors were difficult for human annota-
tors as well and that humans and the two language models
struggled with similar semantic similarity subtypes.

The improvement in performance from switching to
BERT was substantial. Although we saw a large reduction
in FP, there was also a reduction in FN, which was reflected
in improvements to both positive predictive value and sensi-
tivity of both the binary semantic similarity decision and the
downstream ParAlg classification. The BERT model had
similar counts of FP and FN, whereas the word2vec model
had substantially more FP than FN, in spite of the fact that
there were many more semantically dissimilar pairs than
similar ones in the data set. Additionally, looking at the
downstream ParAlg performance in classifying PNT target–
response pairs, semantic similarity was no longer the primary
source of errors when switching to BERT, and instead,
errors relating to the determination of phonological similar-
ity errors predominated.

The top three targets that saw the largest reduction in
FN were polysemous words (“seal,” “can,” and “ruler”).
From examining the t-SNE dimensionality reduction plots,
BERT appeared to cluster similar and dissimilar responses to
these targets to a greater extent than word2vec did. More-
over, examining the most similar words to each target reiter-
ated that BERT may be disambiguating word sense. In
BERT space, at least three of the words most similar to
“seal” were related to the meaning intended in the PNT
(aquatic mammal), whereas in word2vec space, the most sim-
ilar words instead related to a different meaning of that target
word (adhesive seal). Neither word2vec nor BERT fully
picked up on the “aluminum can” meaning of “can,” but
BERT at least had the correctly similar word “canister.” The
words closest to “ruler” in both word2vec and BERT space
were related to the wrong meaning (country ruler rather than
measuring object), but BERT still performed better on that
target than word2vec; for example, it correctly identified
“foot,” “measure,” and “yardstick” as semantically related.
BERT’s improvement of spatial relationships, through clus-
tering of similar and dissimilar words and moving target
words closer to other words that capture the PNT’s intended
meaning, was likely due to the fine-tuning process and
helped BERT perform better on polysemous words.

This analysis only addressed improvements to FN, but
it is possible some FP improvements (which was the larger
source of improvement) were related to word sense as well.
For instance, consider the target word “seal.” We could
imagine a situation where a participant says “peel” as the
response, which a language model (which does not know
what the target image is) could classify as similar due to its
association with, say, peeling tape off a sealed package.
Those accidental similarities would be due to random chance
of the participant coming up with a word that happens to be
similar to a different meaning of the word in the target image
and would be difficult to account for scientifically. Still,
more investigation is needed. Moreover, the majority of
BERT’s improved performance came from a reduction in
FP. Thus, the entire story of why BERT improves the
semantic similarity classification has not been elucidated.
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In the analysis of classification discrepancies for
word2vec and BERT, we saw that a large number of these
pairs for both language models were also difficult for
humans. As noted, 229 and 176 unique pairs for word2vec
and BERT, respectively, were Uncertain, meaning the
three post hoc human raters could not agree if they were
similar or not. Moreover, 60 word2vec and 56 BERT
unique errors were pairs where the three post hoc human
raters and ParAlg disagreed with MAPPD, indicating that
they were actually mistakes in the MAPPD data set rather
than true errors. Thus, 289 out of 790 unique word2vec
errors (36.6%) and 232 out of 536 unique BERT errors
(43.3%) were not fairly “errors” but, instead, were inher-
ently ambiguous pairs. Additionally, subtype disagreement
(agreement on similarity but not on the subtype) was a
common subtype of errors for both humans and ParAlg,
though more so for BERT than for word2vec. Moreover,
humans and both language models had fairly similar pat-
terns for types of errors. Taken together, these results
demonstrate the inherent difficulty of this task and further
show that both models (but particularly BERT) made
very few true errors and performed remarkably well.

Both word2vec and BERT were prone to overidentifi-
cation of semantic similarity and similarly failed more fre-
quently at classifying pairs that share the same category
(category coordinate) or demonstrate an associated relation-
ship (associated). For example, both BERT and word2vec
diverged with human annotators for the target–response
pair “star” and “rectangle,” both of which share the cate-
gory shape, and “saw” and “sander,” which both belong to
the tool category. As with our prior work (Casilio et al., in
press), these patterns of error were also observed in human
annotators and likely reflect a more universal ambiguity
among such pairs, which makes them inherently more sub-
jective to classify, either algorithmically or manually.

Beyond BERT’s superior balancing of instances of FP
and FN, BERT appears to additionally capitalize on pat-
tern recognition among the target–response pairs within the
data set. Specifically, only nine duplicates were present in
the instances of semantic discrepancies within BERT,
whereas there were 238 duplicates for word2vec. This
improvement stems from the fact that BERT can be easily
fine-tuned and, thus, can learn to correctly recognize com-
mon target–response pairs. The recognition of common pat-
terns such as this is particularly advantageous in the context
of scoring a clinical test such as the PNT: Item responses,
although open-ended, tend to cluster around a small num-
ber of options, and stakeholders (speech-language patholo-
gists, patients) place a high value on consistent and predict-
able scoring. As such, the strong performance of BERT in
this regard, among others, shows its promise for permanent
integration into the larger ParAlg system.

With regard to ParAlg, future development will
include other elements, such as automatic speech recognition
218 Journal of Speech, Language, and Hearing Research • Vol. 66 • 2
and computer-adaptive testing algorithms, each of which will
contribute some measurement error; thus, eliminating as
much unreliability in each component will be critical for the
precision of the larger system. Here, we have identified one
important source of noise within the semantic classification
component of the system: inflexible handling of polysemy
and suboptimal recognition of patterns on the part of
word2vec. Through the use of BERT, we reduce the amount
of noise coming from this source, thereby reducing the over-
all amount of unreliability within the entire system. Addi-
tionally, the use of BERT as a component of ParAlg holds
promise because it improves the face validity of the system,
where face validity can be loosely defined as the degree to
which an assessment appears effective in capturing the
intended construct of interest. This is because BERT, unlike
word2vec, yields fewer obvious errors that a human annota-
tor would be unlikely to make. Even though compromised
face validity is not a critical psychometric property for an
assessment in terms of leading to valid clinical inferences, it
can serve as a major implementation barrier preventing
acceptance and adoption of the system by the clinical com-
munity. As such, optimization of face validity, as can be
done with BERT, may increase the likelihood of clinicians
adopting ParAlg as part of routine practice.

We have demonstrated that using BERT leads to a
highly accurate automatic semantic similarity determina-
tion of responses to items on the PNT. However, this
work also has clinical applications for naming measures
involving semantic similarity more broadly. One such
application is the Boston Naming Test (BNT), a widely
used picture-naming test consisting of 60 pictures (Kaplan
et al., 2001). Two of the error codes on the BNT are a
“verbal paraphasia, semantically related to the target
word” and a “verbal paraphasia unrelated to the target
word.” As with the PNT, BERT could be trained to cate-
gorize paraphasias according to that code. Another poten-
tial application is the Quick Aphasia Battery (QAB;
Wilson et al., 2018), which includes a confrontation nam-
ing test (based on the BNT) as one of its subtests. In this
subtest, paraphasias are ranked on an ordinal scale where
semantic relatedness is one of the components. Although
both the BNT and the QAB are shorter and less labor-
intensive to score than the PNT, there are still potential
benefits of automation to make them even more accessi-
ble. Moreover, because the BNT and the QAB have sim-
pler classification systems than the exhaustive PNT rules,
it is possible that automated scoring could have even
higher accuracy on those tests than the PNT. The exact
generalizability of this work to other tests such as the
BNT and the QAB is an empirical question to be explored
in the future.

There are several limitations and many future direc-
tions for this work. Although we were able to explore pat-
terns in both language models, FN and FP were difficult
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to analyze in either the polysemy analysis or the item-level
discrepancy analysis. This work explored only one imple-
mentation each of word2vec and BERT, but it is possible
that different training methods could improve upon results
using either model type. Additionally, the item-level analy-
sis identified a number of errors that are inherently ambig-
uous; it would be useful to retrain both language models
with those pairs removed to see if performance improves.

Overall, fine-tuning BERT leads to a much-improved
semantic similarity classifier with high accuracy at 0.953.
BERT appears to disambiguate polysemous words more
than word2vec, but word sense is still a difficult problem
for both language models. Semantic similarity is an inher-
ently subjective task that no human or algorithm could do
perfectly, but fine-tuning BERT for the task approaches a
degree of performance that is within human range and
makes fewer repeated and obvious mistakes. This work is
an important step for establishing ParAlg as a useful tool
for assessing anomia in aphasia research and clinical
practice.
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Appendix

Data Set Preparation for the Item-Level Discrepancy Analysis

The following describes the data set preparation procedure for the item-level discrepancy analysis of this study.

Data Set Preparation

In an effort to reduce coding burden, the 11,999-item paraphasia data set from the MAPPD (Mirman et al., 2010) was
reviewed by the third author (M.C.), and all duplicate target–response pairs were identified. Duplicates were operationally
defined as pairs that were identical in their (a) target orthographic transcription, (b) response orthographic and phonemic
transcription, and (c) human-annotated paraphasia code. Extraneous punctuation (with the exception of diacritics) and capi-
talization differences were not considered. All duplicate target–response pairs were then removed prior to completing the
item-level discrepancy analysis, resulting in a subset of 9,280 unique target–response pairs.
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