
Automating Paraphasia Identification in Discourse

INTRODUCTION
Previous work focused on automating scoring of picture-naming 
tests [1]. Discourse, however, is harder to analyze automatically 
because paraphasias must be identified.
Advancements in computer hardware (GPUs) have led to the 
development of large language models (LLMs). Here, we 
automate paraphasia identification in Cinderella story retellings 
using a LLM we trained for use on speech-language pathology 
tasks, called BORT (Beyond Orthographically-Restricted 
Transformers) [3]. We had two research objectives:
1. Develop and demonstrate the utility of a LLM for 

automatically identifying paraphasias in discourse. 
2. Explore the impact of clinical characteristics and 

paraphasia type on model performance.  

METHOD
Data consisted of 353 Cinderella story retelling transcripts from 
254 people with aphasia (PWA) from the English AphasiaBank 
database [6]. Demographic and clinical data are in Table 1. We 
filtered paraphasias [7] identified by AphasiaBank, leaving 3,107 
paraphasias out of 93,842 total words across all transcripts. 

We fine-tuned BORT to classify each word as a paraphasia or 
non-paraphasia (Fig. 1). After fine-tuning, we used Receiver 
Operating Characteristic (ROC) analysis to determine the optimal 
threshold for final classification.
We evaluated the models’ predictions against the known 
paraphasias by calculating sensitivity, specificity, accuracy, and 
positive predictive value (PPV). We stratified our results by error 
type, aphasia severity, fluent vs non-fluent aphasia, and mean 
length of utterance in words (MLUW). We tested whether 
differences in accuracy for each stratification were significant 
using two-sided z-tests for independent proportions.

DISCUSSION
This work demonstrates the utility of developing a clinical tool for 
automatic identification of potential paraphasias in discourse.  It is 
limited by requiring transcription, but advances in automatic 
speech recognition raise a solution to that problem. These findings 
take us closer to automatic aphasic discourse analysis.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of NIH/NIDCD 
award #R01DC015999 (PIs: Bedrick & Fergadiotis).

Adapted from “Better” poster template: https://osf.io/ayjzg/

Take a picture to see a complete 
write-up and references! 

Or go to this link:
alexandrasalem.com
My email: salem@ohsu.edu

RESULTS (CONTINUED)
Performance stratified by real words and non-real words is in Table 
3. Non-real word paraphasias were more obvious, while real word 
paraphasias were more challenging.
Results stratified by clinical characteristics are in Table 4. 
Sensitivity was higher in more severe and non-fluent 
participants, and participants with lower MLUW.

An example transcript is in Fig. 2. Darker highlight represents 
higher prediction probability. first, one, sɪləɹɛlə, kids, mopping, 
called, witch have prediction probabilities >0.044 and are classified 
as paraphasias. Actual paraphasias are sɪləɹɛlə and witch.

Using our LLM for 
clinical tasks, we can 
identify 86.7% of 
paraphasias in 
Cinderella story 
retellings
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Table 1. Demographic data of 254 participants at their first session, where available.

Note. WAB-R AQ is the Western Aphasia Battery-Revised Aphasia Quotient [5]. BNT is the raw score 
from the Boston Naming Test-Short Form [4]. VNT is the raw score from the Verb Naming Test [2].

Age Years WAB-R BNT VNT

Post Onset AQ

M (SD) 61.5 (12.4) 5.2 (4.7) 72.1 (17.9) 7.3 (4.5) 14.9 (6.3)
Min - Max 25.6 - 90.7 0.1 - 30.0 10.8 - 99.6 0.0 - 15.0 0.0 - 22.0
Missing (N) 3 3 8 13 11

RESULTS
A comparison of performance using the original classification 
threshold (0.5) and the optimal threshold (0.044) determined 
from ROC analysis is in Table 2. By turning the threshold down, we 
were able to capture far more paraphasias and increase 
sensitivity, at the loss of some accuracy and PPV.

Figure 1. Classifying a sample transcript.

Figure 2. Heat map showing prediction probability levels for each word in a 
sample transcript.

Table 4. Performance (with optimal threshold) across test set stratifications.
Test set N N N Sens Spec PPV Acc

sessions words paraphasias
All

353 93,842 3,107 0.867 0.923 0.278 0.921
paraphasias
WAB-R AQ

172 54,442 1,189 0.818 0.943 0.242 0.940
> median (74.05)

WAB-R AQ
172 36,911 1,857 0.896 0.892 0.305 0.892

 median (74.05)
Fluent

252 80,036 2,338 0.853 0.925 0.255 0.923
participants

Non-fluent
92 11,317 708 0.907 0.903 0.384 0.903

participants
MLUW

177 62,633 1,793 0.852 0.928 0.258 0.926
> median (5.41)

MLUW
176 31,209 1,314 0.888 0.913 0.310 0.912

 median (5.41)

Note. 9 out of 353 total sessions had unavailable WAB-R results and were excluded just from 
analyses involving WAB-R scores.  All differences in accuracy were significant (p < 0.001).

Table 2. Results using original classification threshold (0.5) and optimal threshold (0.044).
Test set Threshold Sens Spec PPV Acc
All paraphasias 0.5 0.625 0.987 0.685 0.971
All paraphasias 0.044 0.867 0.923 0.278 0.921

Table 3. Breakdown LLM performance (with optimal threshold) by paraphasia type.

Paraphasia type N paraphasias (%) LLM Correct (%)
Non-real word (IPA) 1,554 1,547 (0.995)
Real word (orthographic) 1,553 1,147 (0.739)
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