Extended Abstract

Introduction

This work is part of our efforts to produce automated tools for identification and fine-
grained classification of paraphasias within discourse, the production of which is the hallmark
characteristic of most people with aphasia (PWA). We address the initial step for that goal:
automatically identifying paraphasias in transcripts of discourse.

Aims

We fine-tune a machine learning-based large language model (LLM) to automatically
identify paraphasias in Cinderella story retellings. The downstream use-case of this model is for
clinicians to more easily analyze paraphasias produced during discourse by being able to
automatically identify candidate paraphasias quickly and accurately. We had two research
objectives: 1) develop and demonstrate the utility of a classifier for automatically identifying
paraphasias in discourse; 2) explore the impact of clinical characteristics on classifier
performance.

Method

Data consisted of 353 Cinderella story retellings from 254 PWA from the English
AphasiaBank database (MacWhinney et al., 2011). Demographic and clinical information are
shown in Table 1.

Following our protocol in Salem et al. (2023), we defined paraphasias as word-level
errors made to the lemma of content words (i.e., nouns, verbs, adjectives, adverbs) and
excluded from analysis all other kinds of word-level errors (e.g., dysfluency, plurality). This left
3,107 paraphasias out of 93,842 total productions.

We used our pre-trained LLM BORT (Beyond Orthographically Restricted Transformers;
Gale et al., 2023), designed for usage on text with a mix of orthographic and phonemic
transcriptions. Using 10-fold cross validation to prevent overfitting, we fine-tuned BORT to
classify each all tokens in its transcript as paraphasia or non-paraphasia. Examples are shown in
Table 2.

After fine-tuning, we used Receiver Operating Characteristic (ROC) analysis to determine
the optimal threshold for final classification, by jointly maximizing the true positive rate
(sensitivity), and minimizing the false positive rate (1-specificity) from our model’s predictions.
We evaluated the performance of the final classifier by calculating sensitivity, specificity,
positive predictive value (PPV), and accuracy.

We also calculated stratified metrics based on clinical characteristics of the participant:
fluency, severity, and mean length of utterance in words (MLU). We tested whether differences
in accuracy for each stratification were significant using two-sided z-tests for independent
proportions.

Results

Figure 1 shows the ROC curve (AUC = 0.957) and optimal threshold (0.044), which
achieved 0.867 sensitivity, 0.923 specificity, and 0.921 accuracy. Figure 2 shows a heat map
illustrating prediction probability levels for each production in a sample transcript. Table 3



shows our model’s performance metrics stratified by clinical characteristics. We achieved higher
accuracy on transcripts from participants with fluent aphasia, less severe aphasia, and higher
MLU. All differences in accuracy were significant according to the z-tests with p < 0.001.

Discussion

Due to the imbalanced nature of the data—out of 93,842 total productions only 3,107
were paraphasias—if a classifier predicted all productions were non-paraphasias, it would
achieve 0.967 accuracy (with 1.0 specificity, 0.0 sensitivity). Thus, it is important to consider
sensitivity to properly evaluate performance. We achieved high sensitivity (0.867), alongside
high specificity (0.923), demonstrating high performance despite imbalanced data.

Our classifier identified 6,991 non-paraphasias as paraphasias (e.g., “mopping” in Figure
2), in addition to 2,694 correctly classified paraphasias, reflected in our low PPV of 0.278.
However, for our use-case, we prioritized high sensitivity and capturing potential paraphasias, at
the expense of an inflated false positive rate, since it is easier for clinicians to narrow down from
potential options than to have to identify paraphasias initially.

Our model performed significantly better on transcripts from participants with fluent
aphasia, less severe aphasia, and higher MLU. This higher performance came via higher
specificity; sensitivity was higher in non-fluent, more severe, and lower MLU PWA. This
dichotomy is likely due to a few factors. PWA with more severe aphasia had a higher proportion
of paraphasias, leading to lower specificity. Additionally, the PWA with severe aphasia produced
more neologisms than less severe PWA, and neologisms are easier for an automated system to
identify as paraphasias than, e.g., semantic paraphasias, due to being transcribed phonemically.
If accepted, we will present results stratified by paraphasia type.

This work is a successful proof-of-concept demonstrating the utility of developing a
clinical tool for automatic identification of paraphasias produced during discourse. A limitation
of this work is that it assumes the availability of fine-grained transcriptions; recent promising
advances in clinical automatic speech recognition raise the possibility of a technical solution to
this problem. These findings take us closer to automatic aphasic discourse analysis, opening up
possibilities for novel applications beyond assessment (e.g., AAC).
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Tables

Table 1
Demographic characteristics

Characteristic Value

Age (years)
M (SD) 61.48 (12.39)
Min - Max 25.60-90.72
Missing (N) 3

Gender
M (N) 141
F (N) 113

Race
White (N) 218
African American (N) 25
Asian (N) 2
Hispanic/Latino (N) 7
Native Hawaiian/ Pacific Islander (N) 1
Mixed (N) 1

Education (years)
M (SD) 15.47 (2.76)
Min - Max 8-25
Missing (N) 10

Aphasia duration
M (SD) 5.22 (4.73)
Min - Max 0.08 - 30.00
Missing (N) 3

WAB-R AQ
M (SD) 72.05 (17.88)
Min - Max 10.80-99.60
Missing (N) 8

BNT-SF
M (SD) 7.26 (4.52)
Min - Max 0-15
Missing (N) 13

VNT
M (SD) 14.85 (6.26)
Min - Max 0-22
Missing (N) 11

Note. WAB-R AQ is the Western Aphasia Battery-Revised Aphasia Quotient. BNT is the raw score
from the Boston Naming Test-Short Form (Kaplan et al., 2001). VNT is the raw score from the
Verb Naming Test (Cho-Reyes et al., 2012).



Table 2

Transcript preparation and prediction examples

Prepared transcript fragment Ground truth Model Model

classification prediction classification
probability

sindarerla <paz> pretty curl. and | 0 (non- 0.998 1 (paraphasia)

her stsepsamada-and stetfada- no | paraphasia)

mother was all these Adalz

winmim. and. okay. and she

wanted to get all tald up for tea

prince's selabwefan. ...

sindarerla paz <pretty> curl. and | 0 (non- 0.027 0 (non-

her stsepsamada-and stetfada- no | paraphasia) paraphasia)

mother was all these Adalz

winmim. and. okay. and she

wanted to get all tald up for tea

prince's seloabwefan. ...

sindarerla paz pretty <curl>. and | 1 (paraphasia) | 0.979 1 (paraphasia)

her stsepsamada-and stetfada no
mother was all these Adalz
winmim. and. okay. and she
wanted to get all tald up for tea
prince's seloabwefan. ...

Note. In the first example, <paz> is not a paraphasia since its target (“was”) is not a content

word.



Table 3
Performance metrics across data stratifications

Test set N N N Sens Spec Pos pred | Accuracy
sessions | productions | paraphasias value

All participants | 353 93,842 3,107 0.867 0.923 0.278 0.921

WAB-R AQ > 172 54,442 1,189 0.818 0.943 0.242 0.940

median (74.05)

WAB-R AQ <= 172 36,911 1,857 0.896 0.892 0.305 0.892
median (74.05)

Fluent 252 80,036 2,338 0.853 0.925 0.255 0.923
participants

Non-fluent 92 11,317 708 0.907 0.903 0.384 0.903
participants

MLU > median | 177 62,633 1,793 0.852 0.928 0.258 0.926
(5.41)
MLU <= 176 31,209 1,314 0.888 0.913 0.310 0.912

median (5.41)

Note. Fluent participants are those with Wernicke’s, anomic, conduction, or transcortical
sensory aphasia, or those considered “non-aphasic” by the WAB-R. Non-fluent participants are
those with Broca’s, global, or transcortical motor aphasia. 9 out of 353 total sessions had
unavailable WAB-R results and were excluded just from analyses involving WAB-R scores. WAB-R
AQ = Western Aphasia Battery—Revised Aphasia Quotient (Kertesz, 2012). MLU = mean length of
utterance in words. Sens = sensitivity is TP/TP+FN, spec = specificity is TN/TN+FP, pos pred value
= positive predictive value is TP/TP+FP, and accuracy is TP+TN/TP+TN+FP+FN.



Figures
Figure 1
Receiver Operating Characteristic (ROC) curve of the prediction probabilities

1.00 5 ° —o- —
/]
(0.077, 0.867)

0.75
o
o
(O]
=
k%)
(@]
o
g 0.50
=
Py
=
@
C
()]
»

0.25 Optimal Threshold

0.044
0.00 %
0.00 0.25 0.50 0.75 1.00

1- Specificity (False positive rate)

Note. Area under the curve (AUC) = 0.957.



Figure 2
Heat map showing prediction probability levels for each production in a sample transcript

the first one JEIBBIBICinderella . and there . and the the the the kids no don . like her . yeah
and and then you know [iOppiigland all of that you know . and and then . what is it called .
you know the carriage or something like that . uhhuh and then dancing and all of that you
know . and then so . what is it called . carriage you know . it . gone . and and then it . no more
. and then the girl the girl good witch . and then you know does it and all of that . and then the
girl I mean the the guy you know dancing and all of that you know . and then no more . that .
it . and then it the end . I don . know . I mean . oh married . yeah .

Note. Darker highlight represents higher prediction probability. The productions “first”, “one”

’
”n u

“s1lasela”, “kids”, “mopping”, “called”, and “witch”, each have prediction probabilities > 0.044
and are classified as potential paraphasias by our model. The two actual paraphasias in this
transcript are “silauela” and “witch”.



