
Automating Intended Target Prediction for Paraphasias in Discourse
Using a Large Language Model

INTRODUCTION
Previous work focused on automating scoring of picture-naming 
tests [2], [9], [12]. Discourse, however, is harder to analyze 
because we do not know the intended target words.
Advancements in computer hardware (GPUs) have led to the 
development of large language models (LLMs). Here, we 
automate predicting the intended targets of paraphasias in 
Cinderella story retellings using a LLM called Big Bird [13], [14].
We had two research objectives:
1. Assess the feasibility of applying a modern LLM to this task 

and establish a performance baseline
2. Explore the impact of clinical factors and intended target 

ambiguity on model performance.

METHOD
Data consisted of 332 Cinderella story retelling transcripts from 
240 people with aphasia (PWA) from the English AphasiaBank 
database [7]. These sessions contained 2,489 paraphasias for 
which annotators obtained 76.8% average agreement on target 
identification. Demographic and clinical data are shown in Table 1.
To prepare the transcripts, we replaced paraphasias with a 
“blank” token:

... and then and and she put her foot in the. and she 
rode off with the [MASK]. Cinderella was pretty girl. ...

We fine-tuned the model to fill in the blank. We compared this 
performance with the pre-trained LLM without fine-tuning. 
We used cross-validation to prevent overfitting.
We tested the models’ predictions against our human-identified 
paraphasia targets by calculating accuracy. We stratified our 
results by Western Aphasia Battery-Revised (WAB-R) [6] severity, 
fluent vs non-fluent aphasia, whether humans had perfect 
agreement in target identification, and human confidence in 
target identification.  DISCUSSION

We were able to automatically identify intended targets about half 
of the time. Performance was significantly higher on targets for 
which humans had less difficulty, and on participants with fluent 
or less severe aphasia.
These findings take us a step closer to automatic aphasic 
discourse analysis, and open up possibilities for applications that 
extend beyond assessment (e.g., AAC). In future work, we will 
incorporate phonological information.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of NIH/NIDCD 
award #R01DC015999 (PIs: Bedrick & Fergadiotis).

Adapted from “Better” poster template: https://osf.io/ayjzg/

Take a picture to see a complete 
write-up and references! 

Or go to this link:
alexandrasalem.com/talk/cac-2023/
My email: salem@ohsu.edu

RESULTS

Paraphasias in discourse    
are hard to analyze 
automatically because the 
ground truth targets are not 
readily accessible. 

Here, our goal was to  
predict intended 
target words                    
for paraphasias using a 
large language model.
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Table 1. Demographic data of 240 participants at their first session, where available.

Note. WAB-R AQ is the Western Aphasia Battery-Revised Aphasia Quotient [6]. BNT is the raw score 
from the Boston Naming Test-Short Form [5]. VNT is the raw score from the Verb Naming Test [1].

Age Years WAB-R BNT VNT

Post Onset AQ

M (SD) 61.5 (12.5) 5.4 (4.7) 72.8 (17.7) 7.5 (4.5) 15.2 (6.1)
Min - Max 25.6 - 91.7 0.1 - 30.0 10.8 - 99.6 0.0 - 15.0 0.0 - 22.0
Missing (N) 23 23 11 31 31

Figure 1. Accuracy of pre-trained and fine-tuned LLMs matching the 
human-identified target within top 1-20 model predictions.

Pre-trained Fine-tuned
Test set N Accuracy Accuracy Accuracy Accuracy

paraphasias exact match within 5 exact match within 5
All

2489 0.255 0.379 0.468 0.657
paraphasias

Human agreement
1244 0.309 0.405 0.595 0.767

= 100%

Human agreement
1245 0.201 0.353 0.342 0.548

< 100%

Human confidence
1089 0.319 0.419 0.605 0.768

> median (3.3)

Human confidence
1400 0.206 0.348 0.362 0.571

 median (3.3)

WAB-R AQ
1039 0.294 0.410 0.527 0.703

> median (74.6)

WAB-R AQ
1076 0.204 0.325 0.416 0.621

 median (74.6)

Fluent
1666 0.261 0.385 0.487 0.670

participants

Non-fluent
449 0.198 0.301 0.412 0.626

participants

Table 2. Accuracy of pre-trained and fine-tuned LLMs matching the 
human-identified target, across test sets.

Note. 46 out of 332 total sessions had unavailable WAB-R results and were excluded just from 
analyses involving WAB-R scores.  
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