
Anomia is a prominent feature of aphasia (Goodglass & Wingfield, 1997) that manifests in all 
communicative contexts, from single word productions to complex conversations. Work has been done 
to automate scoring of single word responses on confrontation picture-naming tests (Salem et al., 2022, 
Fergadiotis et al., 2016; McKinney-Bock & Bedrick, 2019), but to date there are no automated tools for 
the classification of paraphasias within discourse. Analyzing discourse directly may provide clinical 
insights not gained via decontextualized tasks such as confrontation naming (Hickin et al., 2001, Mayer 
& Murray, 2003, Pashek & Tompkins, 2002). However, discourse is harder to analyze because unlike in 
picture-naming tests, we do not know the ground-truth targets, and first need to identify them in order 
to classify the paraphasias. Recent advancements in computer hardware (specifically development of 
GPUs) have led to the development of large language models (LLMs): machine learning based models 
pre-trained on very large general-purpose datasets, which can be fine-tuned for specific language 
automation tasks. In this work, we make a first attempt at automating a process for predicting the 
intended targets of paraphasias in discourse using a LLM called Big Bird (Zaheer et al., 2021).  

Aims 

The purpose of the current study was to create a baseline model for automated target word 
prediction of paraphasias within transcribed spoken discourse using only the narrative context around 
the paraphasia itself (excluding gestures and phonological information). To this end, we fine-tuned Big 
Bird to automatically predict paraphasia targets in story retellings. We had two research objectives: 1) 
assess the feasibility of applying a modern LLM to this task and establish a performance baseline; 2) 
explore the impact of clinical factors (specifically fluency and aphasia severity) and intended target 
ambiguity (according to human transcribers) on model performance. 

Method 

Data consisted of 332 Cinderella story retelling transcripts from 240 people with aphasia from 
the English AphasiaBank database (MacWhinney et al., 2011). These sessions contained 2,489 
paraphasias. First, three research assistants identified the intended targets of each paraphasia and 
provided a confidence rating (1-4). Then, a certified SLP resolved all disagreements to determine the 
intended target. For each paraphasia, we used the research assistants’ data to calculate the percent 
agreement between annotators and average confidence. Participants’ demographic and clinical data can 
be seen in Table 1.  

To prepare the transcripts, we replaced paraphasias with a “blank” token. We accessed the pre-
trained LLM (Wolf et al., 2019) and fine-tuned it to automatically fill in the blank with a predicted target, 
based on the bidirectional context of the rest of the Cinderella story retelling. We compared this 
performance with the pre-trained LLM without fine-tuning. We tested the models’ predictions against 
our human-identified paraphasia targets by calculating accuracy for exact match (the top model 
prediction was the same as the human-identified target) or within X accuracy (the human-identified 
target was within the top X model predictions, where X ranged from 1-20). We determined whether 
disagreements between the pre-trained and fine-tuned models were significant using McNemar’s test 
(McNemar, 1947). Finally, we stratified our results by Western Aphasia Battery-Revised (WAB-R) severity 
(Kertesz, 2012), fluent vs non-fluent aphasia, whether humans had perfect agreement in target 
identification, and human confidence in target identification. We tested whether differences in 
performance between these stratifications were significant using two-sided z-tests for independent 
proportions. 



Results 

Accuracy results are shown in Table 2. The pre-trained LLM achieved 25.5% accuracy at exactly 
matching the human-identified target, and the fine-tuned LLM achieved 46.8% accuracy. The difference 
in performance was significant, with McNemar’s p-value < 0.001. Performance of the two models within 
top 20 predictions is shown in Figure 1. The fine-tuned model performed better on targets with perfect 
human agreement (59.5% vs 34.2% accuracy) and higher human confidence (60.5% vs 36.2%). It also 
performed better on paraphasias from participants with less severe aphasia (52.7% vs 41.6%) or fluent 
aphasia (48.7% vs 41.2%). All differences in performance were significant (p < 0.01, Table 3).  

Discussion 

We were able to automatically identify the intended target of paraphasias in discourse using just 
semantic information about half of the time. Model performance was higher on targets for which 
human annotators had less difficulty, and on participants with fluent or less severe aphasia. These 
findings take us a step closer to automatic aphasic discourse analysis, and open up possibilities for novel 
applications that extend beyond assessment (e.g., AAC). In future work, we will incorporate 
phonological information to further improve predictive utility. The findings will be discussed with an 
emphasis on their implications for research and clinical practice. 

  



Tables 
Table 1 
Clinical and demographic information for the 240 participants at their first session. 

Characteristic Value 
Age (years)  

M (SD) 61.478 (12.494) 
Min - Max 25.600 - 91.718 
Missing (N) 23 

Gender  
M (N) 124 
F (N) 96 
Missing (N) 20 

Race  
White (N) 189 
African American (N) 
Asian (N) 
Hispanic/Latino (N) 
Native Hawaiian/Pacific Islander (N) 
Mixed (N) 
Unavailable (N) 

23 
2 
4 
1 
1 
20 

Education (years)  
M (SD) 15.439 (2.811) 
Min - Max 8.000 - 25.000  
Missing (N) 28 

Years post onset  
M (SD) 5.389 (4.731) 
Min - Max 0.080 - 30.000 
Missing (N) 23 

WAB-R AQ  
M (SD) 72.771 (17.659) 
Min - Max 10.800 - 99.600 
Missing (N) 11 

BNT  
M (SD) 7.517 (4.475) 
Min - Max 0.000 - 15.000 
Missing (N) 31 

VNT  
M (SD) 15.200 (6.084) 
Min - Max 0.000 - 22.000 
Missing (N) 31 

Note. WAB-R AQ is the Western Aphasia Battery-Revised Aphasia Quotient. BNT is the raw score from 
the Boston Naming Test-Short Form (Kaplan et al., 2001). VNT is the raw score from the Verb Naming 
Test (Cho-Reyes et al., 2012).  



Table 2 

Accuracy of pre-trained and fine-tuned LLMs matching the human-identified target, across test sets. 
  Pre-trained Fine-tuned 
Test set N paraphasias Accuracy 

exact 
match 

Accuracy 
within 5 

Accuracy 
exact 
match 

Accuracy 
within 5 

All paraphasias 2489 0.255 0.379 0.468 0.657 

Human agreement = 100% 1244 0.309 0.405 0.595 0.767 

Human agreement < 100% 1245 0.201 0.353 0.342 0.548 

Human confidence > median (3.3) 1089 0.319 0.419 0.605 0.768 

Human confidence <= median (3.3) 1400 0.206 0.348 0.362 0.571 

WAB-R AQ > median (74.6) 1039 0.294 0.410 0.527 0.703 

WAB-R AQ <= median (74.6) 1076 0.204 0.325 0.416 0.621 

Fluent participants 1666 0.261 0.385 0.487 0.670 

Non-fluent participants 449 0.198 0.301 0.412 0.626 

Note. WAB-R AQ is the Western Aphasia Battery-Revised Aphasia Quotient. Fluent participants are those 
with Wernicke, Anomic, Conduction, or Transcortical Sensory aphasia, or those considered “non 
aphasic” by the WAB-R. Non-fluent participants are those with the Broca, Global, or Transcortical Motor 
aphasia. 46 out of 332 total sessions had unavailable WAB-R results and were excluded just from 
analyses involving WAB-R scores. Accuracy exact match refers to the top model prediction of target 
word matching the human-identified target word. Accuracy within 5 refers to the human-identified 
target word being one of the top five model predictions. 
  



Table 3 
Two-sided z-tests for independent proportions for test set stratifications of exact match accuracy for the 
fine-tuned LLM. 

Comparison z p 
Human agreement = 100% vs Human agreement < 100% 11.353 <0.001 

Human confidence > median (3.3) vs Human confidence <= median (3.3) 11.121 <0.001 

WAB-R AQ > median (74.6) vs WAB-R AQ <= median (74.6) 4.793 <0.001 

Fluent participants vs Non-fluent participants 2.581 0.010 

 

  



Figures 

Figure 1 
Accuracy of pre-trained and fine-tuned LLMs matching the human-identified target within top 1-20 
model predictions. 
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