

Chord-conditioned Melody and Bass Generation

Alexandra C. Salem¹, Mohammad Shokri¹, Johanna Devaney^{1,2}
¹CUNY Graduate Center, ²Brooklyn College

INTRODUCTION

- Our goal was to generate melody and bass scores conditioned on a chord input
- We evaluate five **Transformer**-based [3] strategies for this task
- We use music-theory motivated metrics capturing pitch content, pitch interval size, and chord tone usage in generated files

DATA TRANSFORMER-BASED MODELS Figure 1. Model Architectures We use the **TAVERN** (Theme and Melody Decoder Previous time-step in Melody-→ Predict next Melody time-step 1) No Variation Encodings with Roman Chord → Predict next Bass time-step Previous time-step in Bass-**Bass Decoder** Numerals) corpus [1]: • 27 sets of themes and variations Previous time-step in Melody composed by Mozart and Beethoven **Melody Decoder** → Predict next Melody time-step • Piano, High classical style 2) Chord Chord Progression -Chord Encoder Independent • Training: → Predict next Bass time-step **Bass Decoder** Previous time-step in Bass 25 sets of theme and variations • 1,702 phrases **Melody Decoder** Predict full Melody line Testing: 3) Chord Chord Progression —→ Chord Encoder • 2 sets (1 Beethoven, 1 Mozart) **Bass First** 164 phrases **Bass Decoder** Predict full Bass line Previous time-step in Bass Pre-processing: Create score skeletons that capture **Melody Decoder** Previous time-step in Melody -Predict full Melody line overall bass or melody 4) Chord Chord Progression → Chord Encoder Transpose to C major or C minor **Melody First** → Predict full Bass line **Bass Decoder** Chord input: **kern file [2] → Chord sequence Previous time-step in Melody Ex: C:min G:maj G:maj C:min → Predict next Melody time-step Melody and Melody and Bass input: 5) Chord Chord Progression —— Chord Encoder **Bass Decoder** Co-Generated **kern file → MIDI → REMI Predict next Bass time-step Previous time-step in Bass Ex:

EVALUATION & RESULTS

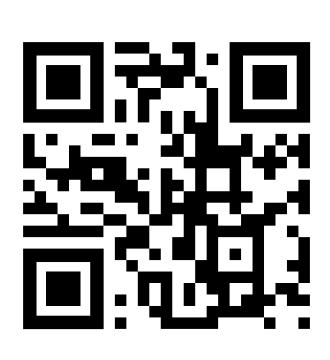
Table 1. Metrics Across Model Architectures

Pitch Content	Metric	Voice	No Chord	Chord <i>Ind</i> .	Chord <i>Mel-1st</i>	Chord Bass-1st	Chord Co-Gen	GT
Pitch class histogram entropy	PC Entropy	Mel. Bass	1.456 1.210	1.627 1.540	1.574 1.523	1.665 1.423	1.773 1.547	1.506 1.474
# pitch classes used / # notes used	PCs Used	Mel. Bass	0.519 0.433	0.501 0.491	0.521 0.501	0.493 0.464	0.528 0.476	0.482 0.471
# of unique pitches	Unique Pitches	Mel. Bass	5.805 5.280	7.494 7.695	6.683 7.207	9.421 6.811	8.841 7.927	7.152 7.335
Range in frequency of pitches	Pitch Range	Mel. Bass	12.634 14.177	15.323 17.976	13.939 17.646	19.945 18.049	16.884 17.573	17.390 15.211
Unique pitch class ratio, melody vs bass Pitch consonance score, melody vs bass	Unique PC Ratio PCS		0.853 0.248	0.836 0.360	0.839 0.261	0.840 0.333	0.864 0.319	$0.820 \\ 0.402$
Pitch Interval Size Average pitch interval size	Pitch Interval	Mel. Bass	3.356 4.001	3.296 4.104	3.298 4.423	4.216 4.128	3.274 3.654	4.467 3.731
Chord Tone Usage Chord-tone to non-chord tone ratio	CT Ratio	Mel. Bass	NA NA	0.728 0.676	0.714 0.717	0.716 0.683	0.744 0.721	0.662 0.611

CONCLUSIONS

- All models benefited from the information in the chords
- Best-performing model was Chord Bass-1st
 - This aligns with how students are typically instructed to do this task
- Somewhat surprisingly, Chord Co-Gen did not perform as well
 - Bass-melody generation ordering is more beneficial than jointly estimating
- In future work, we will test additional model variations
- This work presents a first step in a **pedagogy-inspired musical score generation** approach that could benefit downstream tasks such as chord-controlled training data generation

ACKNOWLEDGMENTS


This work is supported by the National Science Foundation (NSF) award 2228910.

KEY REFERENCES

[1] Johanna Devaney et. al. Theme and variation encodings with roman numerals (tavern): A new data set for symbolic music analysis. In Proceedings of International Society for Music Information Retrieval Conference (ISMIR), pages 728–34, 2015.

[2] David Huron. Music information processing using the humdrum toolkit: Concepts, examples, and lessons. Computer Music Journal, 26(2):11–26, 2002.

[3] Ashish Vaswani et al. Attention is all you need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

